Arkansas Groundwater Protection and Management Report for 2015 #### **STATE OF ARKANSAS** #### ARKANSAS NATURAL RESOURCES COMMISSION 101 EAST CAPITOL, SUITE 350 LITTLE ROCK, ARKANSAS 72201 # Asa Hutchinson GOVERNOR #### **COMMISSIONERS** | Fred Fowlkes | Bill Poynter | Ann Cash | |--------------|----------------|---------------------| | Commissioner | Commissioner | Commissioner | | Vilonia | Chidester | Lake Village | | David Feilke | Sloan Hampton | James Neal Anderson | | Commissioner | Commissioner | Commissioner | | Stuttgart | Stuttgart | Lonoke | | Mike Carter | Don Richardson | Jerry Hunton | | Chairman | Vice-Chair | Commissioner | | Fort Smith | Clinton | Prairie Grove | J. Randy Young, P.E. Executive Director Ryan Benefield P.E. Deputy Director # Arkansas Natural Resources Commission Ground-Water Management and Protection Section Staff Edward Swaim D. Todd Fugitt, R.P.G. James L. Battreal, R.P.G. Chris Kelley Jacob Harvey Perry Dotson Jackie Broach Chief, Water Resources Management Division Geology Supervisor Professional Geologist GIS Analyst Water Well Inspector Water Well Inspector Administrative Secretary #### **ACKNOWLEDGEMENTS** Special thanks to: Bill Baldwin, Anna Nottmeier, Tony Schrader, Aaron Pugh, and David Freiwald of the United States Geological Survey Water Resources Division, Little Rock, Arkansas. United States Department of Agriculture Natural Resources Conservation Service. #### **TABLE OF CONTENTS** | ABSTRACT/INTRODUCTION | p. 9 | |--|--------------| | STATEWIDE HYDROGEOLOGY AND WATER LEVEL TRENDS HYDROGEOLOGY OF THE ALLUVIAL AQUIFER HYDROGEOLOGY SPARTA/MEMPHIS AQUIFER | p.14
p.22 | | GROUND-WATER USE REGISTERED WELLS AND REPORTED WATER USE | p.28
p.50 | | REFERENCES | p.51 | # **FIGURES** | 1. | Arkansas Groundwater Study Areas | p. 10 | |-----|---|-------| | 2. | ANRC Critical Groundwater Designations | p. 12 | | 3. | Geology/Aquifers of Arkansas | p. 13 | | 4. | 2015 Alluvial Aquifer Depth to Water | p. 15 | | 5. | Saturated Thickness of the Alluvial Aquifer | p. 16 | | 6. | Alluvial Aquifer Water Level Changes in the Grand Prairie Area, 2005-2015 | p. 17 | | 7. | Alluvial Aquifer Water Level Changes in the Cache Study Area, 2005-2015 | p. 18 | | 8. | Alluvial Aquifer Water Level changes in the Boeuf-Tenses Area, 2005-2015 | p. 19 | | 9. | Alluvial Aquifer Water Level Changes in the St. Francis Area, 2005-2015 | p. 20 | | 10. | Sparta/Memphis Aquifer Depth to Water, Spring 2015 | p. 24 | | 11. | Sparta Aquifer Water Level Changes in the Grand Prairie Area, 2005-2015 | p. 25 | | 12. | Sparta/Memphis Aquifer Water Level Changes in the Cache Area, 2005-2015 | p. 26 | | 13. | Sparta Aquifer Water Level Changes in the South Arkansas Area, 2005-2015 | p. 27 | | 14. | Reported Groundwater Use in Arkansas for 2012 | p. 30 | | 15. | Percent of the 2012 Water Use Sustainable for the Alluvial Aquifer | p. 31 | # <u>Tables</u> | <u>Tabl</u> | <u>e</u> | Page # | |-------------|--|--------| | 1 | Comparison of Average Alluvial Aquifer Ground-Water Change & Precipitation | 11 | | 2 | USGS Hydrograph of a Well in Union County | 23 | | 3 | New Wells Drilled in Alluvial Aquifer and Groundwater Use Change From 2010 to 2014 | 29 | | 4 | Groundwater Use in Arkansas by Aquifer and Use Type 2012 | 32 | # **Appendices** | Appendix A | Alluvial Aquifer Water Level Monitoring Data | |------------|--| | Appendix B | Sparta/Memphis Water Level Monitoring Data | #### **ABSTRACT** The Arkansas Ground-Water Protection and Management Report is produced annually by the Arkansas Natural Resources Commission (ANRC) pursuant to the Arkansas Ground Water Protection and Management Act of 1991, Arkansas Code Annotated 15-22-906. This report provides a summary of groundwater protection and conservation programs administered by the ANRC during the year 2015, including water-level monitoring, studies of water use trends, and well construction data of the Arkansas Water Well Construction Commission program. This report covers water level data from the spring of 2014 to the spring of 2015. This monitoring period consisted of slightly above average precipitation with a total of 49.93 inches of precipitation, 19.52 inches falling during the typical height if irrigation season from May-August. As a result of this, the short-term water level comparisons for the state's aquifers showed more increases due to the lack of need in pumping the aquifer. The general trend in Arkansas's longterm water-level change is that the groundwater levels are declining in response to continued withdrawals at a rate which is not sustainable. Based on 2012 water use data, only approximately 42.0 percent of the current alluvial aquifer withdrawal of 8036.01 million gallons per day, and 54.6 percent of the Sparta/Memphis aquifer withdrawal of 159.45 million gallons per day, is sustainable. At these pumping rates, water-level declines and the adverse impacts on the state's ground-water system will continue to be observed. As the competition for ground water becomes more intense, the challenge before Arkansas' water resources users, scientists, and conservationists is to continue to work toward conservation, education, and the conjunctive use of groundwater and excess surface water in a manner that brings about the wise and sustainable use of our valuable water resources. #### **INTRODUCTION** This annual groundwater report is prepared to provide the State of Arkansas with a comprehensive water-quantity and water-quality document to be utilized in accordance with the Arkansas Water Plan, as a guide for water resources conservation and protection programs. It includes data, analysis, and recommendations for the ground-water protection and management program, Arkansas Water Well Construction Commission data, and water use studies. This report is built on a strong cooperative program with other appropriate state, federal, and local water resources agencies. Each spring approximately 600 wells are monitored in the alluvial aquifer resulting in the largest number of water level measurements for any one aquifer in the state. This number will vary from year to year depending on the resources available. There are approximately 270 wells that are monitored for water levels in the Sparta/Memphis aquifer. A monitoring schedule has been established to obtain data from the alluvial aquifer and the Sparta/Memphis aquifer on an annual basis. These measurements are taken each spring so as to be the least affected by seasonal pumping for irrigation. The drawdown that results from seasonal pumping is also determined by the USGS, NRCS, and ANRC taking measurements of the alluvial aquifer in both the spring and fall. The USGS also maintains the Arkansas Masterwell Program that supplies long term ground-water quality monitoring in 25 wells from 14 aquifers. These Masterwells are located throughout 21 counties and each year 5 sites are sampled for a variety of water-quality constituents. Hydrogeologic data is collected statewide; however resources are focused on study areas where water-level declines and water-quality degradation have been observed historically. The amount of rainfall is taken into account each monitoring period to observe the change of water levels during times of drought or excess rainfall. The monitoring period which covers the calendar year of 2015 for static water level change in the alluvial aquifer was completed in the spring. The data for 2014-2015 indicates a decline in 148 of 317 wells, with an aquifer-wide average change of +0.28 feet in water levels during this time. Table 1. There are areas of the state experiencing ground-water withdrawals of such magnitude that demand on the aquifer exceeds the sustainable yield, resulting in consistently falling ground-water levels and the development of cones of depression. These areas occur in both the alluvial and Sparta/Memphis aquifers. (Figs. 4 and 10) Water-level declines are consistently observed in areas where water use is highest, such as portions of the Grand Prairie study area, and in the Cache study area west of Crowley's Ridge. The most recent water quality data collected by the USGS showed wells with an increased specific conductance (>/= 1,000 microsiemens/cm) in the alluvial aquifer in Arkansas, Cross, Desha, Greene, Lincoln, Prairie and Chicot counties. (Schrader, T.P., 2010) An increase in the level of specific conductance indicates an increased level of dissolved solids in the ground water. In certain areas these dissolved solids are chlorides leading to the groundwater becoming unsuitable for particular irrigation purposes. **Current Study Areas** **County Boundaries** 10 20 40 60 80 Fig. 2 Crowleys Ridge Current Critical Areas # Geology/ Aquifers of Arkansas # **Hydrogeology and Statewide Water-Level Trends** ## **Alluvial Aquifer** The Mississippi River Valley Alluvial Aquifer extends north from Arkansas into Missouri, south into Louisiana, and under the Mississippi River into Tennessee and Mississippi. For the purpose of this report, the term alluvial aquifer refers to the portion of the aquifer inside the state boundaries of Arkansas. This area generally is bounded by the Fall-Line or contact with outcropping Tertiary formations to the west, the Mississippi River to the east, and the state lines to the north and south. The aquifer is the uppermost aquifer in the Mississippi Embayment and is composed of 50 to 150 feet of sand and gravel, grading from coarse gravel at the bottom to fine sand at the top. It generally is overlain by the Mississippi River Confining Unit, which is composed of 0 to 50 feet of fine-grained sand, silt, and clay. The alluvial aquifer
is underlain by confining units composed of aquifers and confining units of the Mississippi Embayment, which are less permeable than the alluvial aquifer. The alluvial aquifer is connected hydraulically with several rivers and drainage areas. Due mostly to the use of groundwater for agriculture in the region, the aquifer has been pumped in ever-increasing amounts since records were kept from the early 1900's. In 2012 Arkansas had ground-water withdrawals estimated to be 8036.01 million gallons per day (Mgal/d). That is approximately a 537% increase from the amount used in 1965. (Holland, T.W. 2005)(Pugh, 2015) In 2012 there was 8036.01 Mgal/d pumped from the alluvial aquifer. The estimated sustainable yield for the alluvial aquifer is 3374.33 Mgal/d, leaving an unmet demand of 4661.68 Mgal/d (58.0%). Ground water furnishes 63% of the state's total consumption of water, and 95% of the ground water used comes from the alluvial aquifer. Agriculture accounts for 98% of the total water that is pumped from the alluvial aquifer. Figure 4 is an illustration of the 2015 depth to water. Increased pumping from this aquifer has resulted in decreased outflow to rivers, increased inflow from rivers, increased inflow from the overlying confining unit, regional changes in ground-water flow, regional water level declines, reduction of aquifer storage, and decreases in well yields (Ackerman, 1996). Fig. 4 60 Miles Wells Grand Prairie Study Area Fig. 6 Wells Crowleys Ridge Cache Study Area Fig. 7 Wells Boeuf-Tensas Study Area Fig. 8 Wells Crowleys Ridge St. Francis Study Area Fig. 9 There were 317 alluvial aguifer wells monitored for water-level change in both 2014 and 2015, out of these 148 (46.7%) had a decline in the static water level. The overall water-level average change was +0.28 ft. The 2014 precipitation for Arkansas was approximately 49.93 inches, which is slightly above the statewide average of 49.19 inches. It should be noted that 19.52 inches of rain (39.1% of the yearly total) fell during the typical irrigation season from May through August mitigating the use of groundwater for the purpose of irrigation. Of 244 alluvial aquifer wells monitored in both 2010 and 2015, 201 (82.4%) of these had declining static water levels. Over a 10-year period of time from 2005 to 2015, 300 of 361 wells (83.1%) monitored showed declines in the alluvial aguifer. The average change over the entire aguifer during the 2014-2015 monitoring period was +0.28 feet, the 5-year average change was -2.84 feet, and the 10-year average change was -4.22 feet respectively. There are still significant cones of depression in the alluvial aquifer, especially in the Grand Prairie and in the Cache Study Area west of Crowley's Ridge. (Fig. 4) The data in this year's report shows near stable water levels in all study areas for the one year averages, however declines due to over-use still exist and are apparent in the 10-year averages as well as the period of record. Appendix A is a table of specific water level monitoring data for the alluvial aguifer. The one year water-level change data reflects the higher than normal rainfall during the irrigation period of spring 2014. During such years, ground-water withdrawals are reduced, while recharge is typically greater. ### Sparta/Memphis Aquifer The Sparta/Memphis aquifer of Tertiary Age is located in the south, southeast, and east regions of Arkansas, as well as portions of Texas, Louisiana, and Mississippi. The aquifer outcrops in Dallas, Hot Spring, Saline, Grant, Nevada, Columbia, and Ouachita counties throughout the state. The Sparta/Memphis Sand aquifer thickness averages approximately 600 feet, ranging from a thickness of approximately 200 to 300 feet thick in the outcrop area, to about 900 feet thick in the southeastern part of the state. The majority of the area discussed in this report is a confined aquifer underlain by the Cane River Formation and overlain by the Cook Mountain Formation, both of which are effective confining units. The Sparta aquifer in south Arkansas consists of two units, separated by the confining unit located between them: the upper Greensand aquifer and the lower El Dorado aquifer. The Sparta is composed mainly of sand with considerable amounts of silt, clay, shale, and lignite, which are found in lenses throughout the unit. Lithologically, it varies considerably both vertically and laterally. Glauconite, a green hydrous potassium iron silicate mineral, is sometimes found in sand lenses in the upper levels of the aquifer, hence the name "Greensand". The Memphis Sand aquifer in eastern Arkansas is part of a thick sand section in the middle and lower portions of the Claiborne Group. It includes the Sparta Sand, the predominantly sandy facies of the Cane River, and the Carrizo Sand. The Memphis aquifer is the major source of quality drinking water in the area. Groundwater levels were collected from 225 water wells in the Sparta/Memphis aquifer throughout the south and east portions of Arkansas in 2014 and 2015. Sixty-four of those wells (28.4%) showed declines in the static water level. The average change over the entire aquifer during the 2014-2015 monitoring period was +2.36 feet. During the monitoring period from 2010 to 2015, two-hundred and seven (207) wells were monitored for water-level change, with 112 of these wells (54.1%) showed a decline in static water levels. During the 10-year monitoring period, 229 wells were monitored with 103 (44.9%) of these wells showing declines. Appendix B is a table of specific water level monitoring data for the Sparta/Memphis aquifer. For the Sparta/Memphis aquifer the USGS Conjunctive Use Optimization Model estimates that only 54.6 percent of the 2012 withdrawal of 159.45 Mgal/d is sustainable. Data beginning in 1965 has been plotted as hydrographs for selected wells throughout the study area. Trend line analysis indicates that the general trend for most wells included in this study is that of a lowered potentiometric surface. This decline in potentiometric surface in the aquifer can be attributed to a statewide increase in water use from 139 million gallons per day (Mgal/d) in 1970 to 159.45 Mgal/d in 2012. The estimated sustainable yield for the aquifer is 87 Mgal/d leaving an unmet demand of 72.45 Mgal/d. The most recent significant increase in water use from the Sparta has been for agricultural supply in the Grand Prairie and Cache Study Areas. The exception to this rule is the data from the South Arkansas Study Area, where local education, conservation, and the use of excess surface water has led to significantly fewer declines, as well as some rebound in water levels in some areas. The potentiometric surface in five wells has actually risen over 90 feet respectively over a 14-year period from 2000 to 2014. Union County alone has seen an average change in water level of +36.13 feet from 2005 to 2015. The surrounding counties in the South Arkansas Study Area have also all seen an average rise in water levels during this time, with Calhoun county having an average change of +8.09, Columbia +4.04, and Ouachita +6.36 feet respectively. (Fig.13) Wells Sparta Boundary Grand Prairie Study Area Fig. 11 Wells — Sparta Boundary Crowleys Ridge Cache Study Area Fig. 12 Wells Fig. 13 #### **GROUND WATER USE** #### **REGISTERED WELLS** In accordance with Act 1051 of 1985, all wells in Arkansas that have the capacity to produce fifty thousand (50,000) gallons per day must be registered with the ANRC. Domestic wells are exempt. The quantity used must be reported by March 1st of the following year. USGS reports show there are approximately 50,000 registered wells reported in the State, of which over 98% are agricultural wells, most of which are irrigation wells located primarily in eastern Arkansas. The remaining approximate 2% reported wells are used predominately for commercial, industrial, and public water supply purposes. #### **REPORTED WATER USE** In 2012 an estimated 8,302.81 million gallons per day (Mgal/d) of water were reported to be withdrawn from the State's aquifers. The greatest reported volume is pumped from the alluvial aquifer and used primarily for irrigation. The counties that reported the largest groundwater withdrawals from the alluvial aquifer were; Poinsett 835.20 Mgal/d, Cross 545.48 Mgal/s, Jackson 472.91 Mgal/d, Arkansas 445.91 Mgal/d, and Clay 436.61 Mgal/d. The reported total estimated groundwater use from the alluvial aquifer during 2012 was 8036.01 Mgal/d. The Sparta/Memphis aquifer is the second largest aquifer in terms of withdrawals. The reported groundwater use from the Sparta/Memphis aquifer for 2012 159.45 Mgal/d, mostly used for municipal and industrial purposes. Jefferson County was the largest user of Sparta/Memphis water of all the counties, with an average withdrawal rate of 42.29 Mgal/d, followed by Arkansas County with a rate of 26.90 Mgal/d. Table 4 contains the reported ground-water use by aquifer per county in Arkansas for 2012 and is also broken down by category of use. This is the most recent information as supplied to the ANRC by the USGS. The Sparta/Memphis aquifer had a reported average withdrawal of 159.45 Mgal/d during the 2012 reporting period. It is important to note that mainly due to increases in the Sparta/Memphis aquifer for irrigation in the area, Arkansas County is now the second largest user of this aquifer's resources, with a withdrawal of 26.90 Mgal/d. Jefferson County is the largest user of Sparta/Memphis ground-water, with a withdrawal of 42.29 Mgal/d. (Table 4) Figure 14 shows the quantity of ground water use for each county in Arkansas as reported. # **AWWCC** During the licensing period of 2015 the Arkansas Water Well Construction Commission (AWWCC) reported licensing; 165 Contractors, 217 Drillers, 50 Apprentice Drillers, 199 Pump Installers, 81 Pump Installer Apprentices, and 367 drill rigs for 2016. These numbers fluctuate from year to year but are in all, average for the
last ten to twelve years. On average just over 1/3 of the new wells drilled each year are domestic water wells. Between 50% and 60% of the new wells drilled are for crop irrigation purposes with the remainder being livestock, poultry, public supply, geothermal or test wells respectively. | | | ed in Alluvial Aquifer and | | |---------------|--------------------------------------|-------------------------------|--| | County | Groundwater Us New Irrigation wells | Groundwater Use change (Mgpd) | Groundwater Use Change
per New Well
(Mgpd) | | Arkansas | 129 | -58.99 | -0.46 | | Ashley | 50 | -5.51 | -0.11 | | Chicot | 106 | -2.31 | -0.02 | | Clay | 154 | 40.34 | 0.26 | | Craighead | 133 | -24.09 | -0.18 | | Crittenden | 98 | 71.88 | 0.73 | | Cross | 268 | 26.17 | 0.10 | | Desha | 159 | 3.44 | 0.02 | | Drew | 30 | 39.66 | 1.32 | | Greene | 60 | 108.61 | 1.81 | | Independence | 10 | 3.52 | 0.35 | | Jackson | 185 | 49.95 | 0.27 | | Jefferson | 101 | -15.75 | -0.16 | | Lawrence | 116 | 200.5 | 1.73 | | Lee | 65 | -32.08 | -0.49 | | Lincoln | 63 | 23.21 | 0.37 | | Lonoke | 151 | 3.4 | 0.02 | | Mississippi | 210 | -16.08 | -0.08 | | Monroe | 132 | 15.53 | 0.12 | | Phillips | 93 | -24.66 | -0.27 | | Poinsett | 174 | -7.79 | -0.04 | | Prairie | 98 | 183.28 | 1.87 | | Pulaski | 25 | 8.41 | 0.34 | | Randolph | 50 | -5.51 | -0.11 | | St. Francis | 144 | -51.43 | -0.36 | | White | 30 | -1.24 | -0.04 | | Woodruff | 186 | -50.45 | -0.27 | | Average Groun | ndwater Use Change per New Allı | ıvial Aquifer Well, Mgpd | 0.25 | # Ground Water Use in Arkansas as of 2012 (Mgal/day) #### Legend Greater than 1 - 10 Mgal/day Greater than 10 - 100 Mgal/day Greater than 100 - 300 Mgal/day Greater than 300 - 572 Mgal/day Crowleys Ridge Total Use (Mgal/day): 8,302.81 *Data Obtained from United States Geological Survey The water use values shown in the counties divided by Crowley's Ridge represent the separation of water use based on location East or West of the ridge. Fig. 14 | Quaternary Alluvial and Terrace Deposits Cockfield Formation Sparta-Memphis Sand Terrace Deposits Formation Sparta-Memphis Sand Terrace Deposits Formation Terrace Deposits Formation Sparta-Memphis Sand Terrace Deposits <th>Cane River # of # of One One One One One One One One One One</th> <th>- (</th> <th></th> <th>_</th> <th></th> <th>ř</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | Cane River # of # of One | - (| | _ | | ř | | | | | | | | | |--|--|--------------|---------------|------|----------------------|-----------|---------------|---------------|----------------------|-------------------------------|--------|--------------------|--------|-----------------| | Lure 0.09 1 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 <t< th=""><th># # of # wells wells</th><th>Wilcox Group</th><th>p Formation</th><th></th><th>Nacatoch Sand</th><th>Formation</th><th></th><th>Trinity Group</th><th></th><th>Paleozoic
Undifferentiated</th><th></th><th>All Other Aquifers</th><th>UseTyp</th><th>Use Type Totals</th></t<> | # # of # wells | Wilcox Group | p Formation | | Nacatoch Sand | Formation | | Trinity Group | | Paleozoic
Undifferentiated | | All Other Aquifers | UseTyp | Use Type Totals | | ture 0.09 1 0.00 0 0.00 serial 0.00 0 0 0.00 0 0.00 serial 0.00 0 serial 0.00 0 0 0.00 serial 0.00 0 0 0.00 serial 0.00 s | | Mgal/d | Mgal/d | ± ₹ | # of
Mgal/d Wells | Mgal/d | # of
Wells | Mgal/d We | # of
Wells Mgal/d | /d Wells | Mgal/d | # of
Wells | Mgal/d | # of Wells | | ture 0.09 1 0.00 0
0.00 0 0.00 | | | anse | 2000 | | П | |) | | | | | | | | ture 0.00 0 0.00 | | 00.00 | 00.00 | 0 0 | 0.00 | 00.00 | 0 0 | 0.00 | 0 0 | 0.00 | 0.00 | 0 0 | 0.09 | | | ture 0.00 0.00 0.00 Supply 0.00 0.00 0.00 0.00 Supply 0.00 0.00 0.00 0.00 Supply 0.00 0.00 0.00 0.00 Pricial 0.00 0.00 0.00 0.00 arcial 0.00 0.00 0.00 0.00 supply on 0.00 0.00 0.00 0.00 on 0.00 0.00 0.00 <th< td=""><td></td><td></td><td></td><td>0 0</td><td></td><td></td><td></td><td>00.0</td><td></td><td></td><td></td><td></td><td>0000</td><td></td></th<> | | | | 0 0 | | | | 00.0 | | | | | 0000 | | | ture 0.00 0.00 0.0 | | | | 0 0 | | | | 00.00 | | | | 11 | 495.39 | 2,33 | | ture 0.00 0 0.00 | | | 0.00 | 0 | | | 0 | 0.00 | ľ | | | | 0.00 | | | ture 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | | | | 0 | | | 0 | 00.00 | | | | | 00'0 | | | ture 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | | | | 0 | | | | 00.00 | | | | | 1.36 | | | ture 0.00 0
0.00 0 0.00 | | | 00.00 | 0 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 23.38 | 11 | 496.84 | 2,335 | | tracial 0.00 0 0.00 0 0.00 supply 0.00 0 0.00 0 0.00 supply 0.00 0 0.00 0 0.00 supply 0.00 0 0.00 0 0.00 strictal stri | | | | _ | - | | | | | _ | | | | | | ture 0.00 0.00 0 0.00 0.00 0.00 0 0.0 | 000 | 90.0 | Asniey county | | L | 000 | C | 00.0 | | 00.0 | 00.0 | | 00 0 | | | Section Color Co | 000 | | 00.00 | o c | 00.00 | 000 | o c | 00.00 | 0 0 | | 0000 | 0 0 | 00.0 | | | on 123.55 972 0.00 0 0.00 Supply 0.00 0 0.00 0 0.00 Supply 123.65 972 8.05 20 0.00 Lure 0.00 0 0.00 0 0.00 arcial 0.00 0 0.00 0 0.00 sid 0.00 0 0.00 0 0.00 supply 0.00 0 0.00 0 0.00 survival 0.00 0 0.00 0 0.00 survival 0.00 0 0.00 0 0.00 supply 0.00 0 0.00 0 0.00 arcial 0.00 0 0.00 0 0. | | | | 0 | | | | 00.00 | | | | | 6.64 | | | Supply 0.00 0.00 0.00 0.00 Supply 123.6S 972 8.05 20 0.00 Lure 0.00 0.00 0.00 0.00 0.00 and 0.00 0.00 0.00 0.00 0.00 sid 0.00 0.00 0.00 0.00 supply 0.00 0.00 0.00 0.00 surdial 0.00 0.00 0.00 0.00 arrial | | | | 0 | | | | 0.00 | | | | 3 19 | 126.48 | 991 | | Supply 0.00 0.00 0.00 0.00 Supply 123.6S 972 8.05 20 0.00 Lure 0.00 0 0.00 0 0.00 and 0.00 0 0.00 0 0.00 sid 0.00 0 0.00 0 0.00 supply 0.00 0 0.00 0 0.00 surdial 0.00 0 0.00 0 0.00 surply 0.00 0 0.00 0 0.00 arcial 0.00 0 0.00 0 0.00 | | | | 0 | | | 0 | 00.00 | 0 | ĺ | 0.00 | Ĺ | 00.00 | | | Supply 123.6S 972 8.05 20 0.00 Lure 0.00 0 0.00 | 0.00 | | | 0 | | 00.00 | | 00.00 | | | | 0 0 | 00'0 | | | ture 0.00 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0. | | | | 0 | | | | 00.00 | | | | | 1.48 | | | refail 0.000 0 0.000 0 0.000 al 0.000 0 0.000 0 0.000 n 0.000 0 0.000 0 0.000 upply 0.000 0 0.000 0 0.000 ure 0.000 0 0.000 0 0.000 ure 0.000 0 0.000 0 0.000 upply | 0.00 0 | 0.00 | 0.00 | 0 | 0.00 | 00.00 | 0 | 0.00 | | 0.00 | 2.90 | 20 | 134.60 | 1,012 | | reial 0.00 0 0.00 0 0.00 al 0.00 0 0.00 0 0.00 reial 0.00 0 0.00 0 0.00 reial 0.00 0 0.00 0 0.00 al 0.0 | | | Baxter County | | - | | | | | | | | | | | reial 0.00 0 0.00 0.00 al 0.00 0 0.00 0 0.00 n 0.00 0 0.00 0 0.00 n 0.00 0 0.00 0 0.00 upply 0.00 0 0.00 0 0.00 reial 0.00 0 0.00 0 0.00 nn 0.00 0 0.00 0 0.00 nue | 0.00 | 00.00 | 00.00 | 0 | 0.00 | 00.00 | 0 | 0.00 | | 0.00 | 0.00 | | 0.00 | | | 0.00 | 0.00 | | 0 0.00 | 0 | | 0.00 | | 00.00 | 0 | 0.17 | 3 0.00 | 0 1 | 0.17 | * | | 0.00 | 1 | | | 0 | | | | 00.00 | | | | Ĭ | 00.0 | | | upply 0.000 0 0.000 0 0.000 upply 0.000 0 0.000 0 0.000 ure 0.000 0 0.000 0 0.000 ure 0.000 0 0.000 0 0.000 upply 0.000 0 0.000 0 0.000 | 0.00 | 00:00 | | 0 | 0.00 | | 0 | 00.00 | | | 00.00 | | 0.00 | | | upply 0.000 0 0.000 0 0.000 ure 0.000 0 0.000 0 0.000 ure 0.000 0 0.000 0 0.000 al 0.000 0 0.000 0 0.000 upply 0.000 0 0.000 0 0.000 upply 0.000 0 0.000 0 0.000 | 0.00 0 | | 00.00 | 0 0 | | 0000 | | 0.00 | 0 0 | | | 0 | 0.00 | | | ure 0.00 0 0.00 | | | | 0 | | | 5 | 0.00 | | | | | 0.00 | | | ure 0.00 0 0.00
0 0.00 | | | | 5 (| II. | | 5 (| 0.00 | | 0.51 18 | ľ | | 0.51 | | | refail 0.000 0 | 0.00 | 0.00 | 0.00 | 5 | 0.00 | 0.00 | 0 | 0.00 | | 27.0 | 0.00 | 1 | 0.68 | 77 | | refail 0.000 0 0.000 0 0.000 ail 0.000 0 0.000 0 0.000 n 0.000 0 0.000 0 0.000 upply 0.000 0 0.000 0 0.000 upply 0.000 0 0.000 0 0.000 | | | ntor | ~ | | | | | | | | | | | | rcial 0.000 0 | 0.00 | | 0 0.00 | 0 | | 00.00 | 0 | 00.00 | | | | | 0.00 | | | na 0.00 0 | | | | 0 | | | | 0.00 | 0 | 0.00 | | | 0.00 | | | 0.00 0.00 0.000
0.000 0. | 0.00 | 0.00 | 0.00 | 0 0 | 0.00 | 0.00 | | 0.00 | | 0.00 | | | 0.00 | | | 00'0 0 00'0 0 00'0 Ajddn | 00.00 | | | D .C | | | 0 0 | 00.00 | | | 0.00 | | 0.00 | | | 0000 0 0000 0 0000 Aladas | 0.00 | | 0 0.00 | 0 | | 0.00 | | 0.00 | 0 0 | 0.00 | | 0 | 0.00 | | | 0000 0 0000 | ľ, | | | 0 | | | | 00.00 | | | | | 1.42 | | | | 0.00 | 0.00 | 00.00 | 0 | | 00.00 | | 0.00 | Ĵ. | 1.44 21 | 00.00 | ľ | 1.44 | 2 | | | | | Boone County | > | | | | | - | _ | | | | | | Agriculture 0.00 of 0.00 of 0.00 of | 0.00 | 00.00 | 00.0 | 0 | 0.00 | 00.00 | C | 0.00 | Ĭ | 0.00 | 00:0 | | 0.00 | | | 0.00 0 0.00 0 0.00 | 0,00 | | 0.00 | 0 | | | | 00.00 | 0 | | | | 00.00 | | | 0.00 0.00 0 | | | | 0 | | | | 00.00 | | | | | 00.0 | | | 0.00 | 0.00 | 00.00 | 00.00 | 0 | | 00.00 | 0 | 00.00 | | 0.00 | 00.00 | | 0.00 | | | Mining 0.00 0 0.00 0 0.00 0 | | 00.00 | 0 0.00 | 0 | | 00.00 | 0 | 0.00 | | 0.00 | | | 0.00 | | | 0.00 0 0.00 0 0.00 | 0.00 0 | | 0 00.00 | 0 | | 00.00 | | 00.00 | 0 | | 0.00 | 0 0 | 00.00 | | | Supply 0.00 0 0.00 0 0.00 | 0.00 | | | 0 | | | | 0.00 | | | | | 0.67 | | | TOTAL 0.00 0 0.00 0 0.00 0 | | 00.00 | 0 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | | 0.67 | 00.00 | | 0.67 | | | | Terrace Deposits Mgal/d # of Wells | Σ | Cockfield Formation # of gal/d Wells | Sparta-Memphis Sand
Mgal/d # of Wells | Can
Mgal, | e River
of
/d Wells | Wilcox Group
of
Mgal/d Wells | | Clayton
Formation
of
Mgal/d Wells | Je Se | Nacatoch Sand
of
Mgal/d Wells | Toki
Forma
Mgal/d | Trinity C | Ø | Paleozoic
Undifferentiated
of
Mgal/d Wells | All Other Aquifers # of Wgal/d Wells | | UseTypeTotals Mgal/d #ofWells | |-----------------|-------------------------------------|---|--------------------------------------|--|--------------|-----------------------------|--|---------|--|--------|---|-------------------------|-----------|-----|---|--------------------------------------|-----|-------------------------------| | and the same of | | | | | | | | Bradl | Bradley County | | | | | | | | | | | Agriculture | | | 1 | | 0 0.00 | 1 | 0.00 | 0 | 0.00 | | 0 00 | 1 | 00.00 | 0 | 0.00 | | 0 | 0.00 | | commercial | | | | | | | 0.00 | 0 | 0.00 | 0.00 | | | 0.00 | 0 | 0.00 | | 0 0 | 0000 | | ndustrial | | | | | | | 0.00 | э, | non. | | | | | 0 | 0.00 | | a . | 75.0 | | rngation | 0.00 | | | 0.00 | | | 0.00 | 0 0 | 0.00 | 00.00 | | 0.00 | | 0 0 | 0.00 | | 0 0 | 0.00 | | Mining | | | | | 0.0 | | 0.00 | 0 0 | 00.00 | 0 0 | | | 00.00 | 0 | 0.00 | | 5 0 | 0.00 | | Power | 0.00 | | | 0.00 | | | 00.00 |) (| 00.00 | 00.00 | | 0.00 | 00.00 | 0 | 0.00 | 00.00 | 0 0 | 0.00 | | Fubilic Supply | 0.00 | | 01.0 | | |) C | 00.0 | , c | 00.0 | 00.0 | 0 0 | | 00:0 | - c | 00.0 | 00.0 |) C | 0.32 | | 101 | | | | | | | 3 | | 2 | | | | | > | 3 | | , | 200 | | | | | | | | | | Calho | oun County | | | | | | | | ı | | | Agriculture | 0.00 | | 0.00 | 0.00 | | | 0.00 | 0 | 00.00 | 00.00 | | 00.00 | 00.00 | 0 | 00.00 | 00.00 | 0 | 0.00 | | Commercial | | | | 0.00 | 0.0 | | 0.00 | 0 | 0000 | | 0 00 | | 00.00 | 0 | 00.00 | 0.00 | 0 | 0.00 | | ndustrial | | j | | | | | 0.00 | 0 | 0.00 | | | | | 0 | 0.00 | | 0 | 0.01 | | rrigation | | | ľ | | | ľ | 0.00 | 0 | 0.00 | | 0 00 | | | 0 | 0.00 | | 0 | 0.00 | | Mining | | ľ | | | | | 0.00 | 0 | 0.00 | | | 0 | | 0 | 0.00 | | 0 | 0.00 | | Power | | | | | | | 00.00 | 0 | 0.00 | | | | 00.00 | 0 | 0,00 | | 0 | 00.00 | | Public Supply | | | 0.00 | | | | 00.00 | 0 | 0.00 | | | | | 0 | 0.00 | | 0 | 0.30 | | TOTAL | 0.00 | | | | 8 0.00 | 0 | 00.00 | 0 | 0.00 | 00.00 | | | 0.00 | 0 | 0.00 | 00.00 | 0 | 0.31 | | | | | | -2 | | | | - 2 | Country | | | | | | | | | - | | Apricultura | 0 000 | | 0.00 | lono | L | | 0.00 | | O D DO | 00.0 | U. | 000 | lon o lo | | 00.0 | lon o lo | C | ou o | | Commercial | 0.00 | | | | 0.00 | 0 0 | 00.00 | 0 | 0.00 | 00.00 | | | | 0 | 0.12 | 0.00 | o m | 0.12 | | ndustrial | | Ú | 1 0 | ĺ | | | 0.00 | 0 | 0.00 | 1 | | | | 0 | 0.00 | | 0 | 0.00 | | rrigation | | | | 0000 | | | 00.00 | 0 | 0.00 | 0 0.00 | | 00.00 | 00.00 | 0 | 0.00 | 00.00 | 0 | 0.00 | | Mining | | | | | | | 00.00 | 0 | 0.00 | | | | | 0 | 0.00 | 1 0.00 | 0 | 0.00 | | Power | 0.00 0 | | 0.00 | 00.00 | Ц | | 00.00 | 0 | 0.00 | 0 0.00 | 0 00 | 00.00 | 00.00 | 0 | 0.00 | 00.00 | 0 | 0.00 | | Public Supply | 0.00 0 | | | | 00.00 | | 0.00 | 0 | 0.00 | 0 0.00 | | | | 0 | | 14 0.00 | 0 | 0.91 | | TOTAL | 0.00 0 | | 0.00 | 0.00 | 0.0 | | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 00.00 | 0 | 1.04 | 00.00 | m | 1.04 | | | | | | | | | | - Chick | Cot County | | | | | | | | | | | Agricultura | 0 00 0 | | 0.00 | Junu | L | | 00.0 | | 0.00 | n n | | 000 | 0000 | C | 0.00 | 0000 | C | 00.0 | | Commercial | 0.00 | | | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 00 | | 00:00 | 0 | 0.00 | 00:00 | 0 | 0.00 | | Industrial | | | | | | | 0.00 | 0 | 0.00 | | | | | 0 | 0.00 | | .0 | 0.00 | | rrigation | 1,63 | | | | | | 00.00 | 0 | 0.00 | | | | | 0 | 0.00 | | 13 | 200.63 | | Mining | | | 0 00 | | Ι. | | 00.00 | 0 | 00.00 | | | | | 0 | 00.00 | | 0 | 0.00 | | Power | 0,00 0 | Í | 0.00 | | 00.00 | | 00.00 | 0 | 00.00 | 0 0.00 | | | 00.00 | 0 | 0.00 | 00.00 | 0 | 00.0 | | Public Supply | | | 1.46 8 | | | | 0.00 | 0 | 0.00 | i | 00 | 00.00 | | 0 | 0.00 | 00.00 | 0 | 1.83 | | TOTAL | 198.93 1,634 | | 2.02 | 0.37 | 3 0.00 | | 00.00 | 0 | 0.00 | 00.00 | 0 | 0.00 | 0 0.00 | 0 | 0.00 | 0 1.13 | 13 | 202.45 | | | | | | | | | | Clark | k County | | | | | | | | - | - | | Agriculture | 0.00 | | 0,00 | 0.00 | | | 00.00 | 0 | 0.00 | 00.00 | | 00.00 | 00.00 | 0 | 0.00 | 00.00 | 0 | 0.00 | | Commercial | 0.00 | | | | 00.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 000 | | 00.00 | 0 | 1.77 | 0.00 | 0 0 | 1.77 | | Industrial | | | IJ | | | | 00.00 | 0 | 0.00 | | | | | 0 | 0.00 | | 0 | 0.17 | | Irrigation | | | 0.00 | | | | 0.00 | 0 | 0.00 | | | | | 0 | 0.00 | | 0 | 0.00 | | Mining | | | | | | 1 | 0.00 | 0 | 0.00 | 1 | | | | 0 | 0.00 | | 0 | 0.00 | | Power | | | | | | | 0.00 | 0 | 0.00 | 00.00 | | | 00.00 | 0 | 0.00 | | 0 | 00.00 | | Public Supply | 0.00 0 | Ú | 2 | | | | 00.00 | 0 | 0.00 | | Û | | | 0 | 0.00 | Ì | 0 | 90.0 | | TOTAL | | Í | | I | 0.0 | | 0.00 | 0 | 0.00 | 1 0.17 | 7 7 | | 2 0.00 | 0 | 1.77 | | 0 | 1.99 | | | | | | | | | | | H | | | ļ. | | | | | | | | Mathematical Math | | Terrace Deposits | eposits | Formation | | Sparta-Memphis Sand | Ca | ne River | _ | ox Group | Format | þ | Nacatoch Sand | | Formation | | Trinity Group | | Undifferentiated | All Other | Aquifers | Use Type Totals | Totals | |--|----------------|------------------|------------|-------------|---|---------------------|-------|----------|---|------------------|--------------|---------------|---------------|-----|-------------------|---|---------------|---|------------------|-----------|---------------|-----------------|------------| | Column C | UseType | | # of Wells | Mgal/d Well | | # of Well | s Mga | ठ | - | # of
/d Wells | Mgal/d | <u> </u> | | - 3 | # of
al/d Well | | /d Well | | # of
d Wells | Mgal/d | # of
Wells | | # of Well: | | | | 0 | | | | | | | | | Clay County | | | | | | À | | | | | | | | Column C | gricul ture | 0.00 | | | | | Ц | | | | 1 | 0 | 0.00 | 4 | | | 00. | | | | 0 | 0.00 | | | The color | mmercial | 0.00 | | | | | | | | | | 0 | 0.00 | | | | 00. | | | | 0 | 0.00 | | | | dustrial | 0.00 | | | | | | | | | | 0 0 | 0.00 | | | | 00. | | | | 0 | 00.00 | | | Column C | ganon | 430.09 | | | | | | | | | | 0 0 | 0000 | | | | 00.00 | | | O. | 667 | 0000 | 2,41 | | Column C | ming | 0.00 | | | | | | | | | | 0 | 0.00 | | | | 00.00 | | | | 0 | 0.00 | | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | Public Supply | 0.05 | | | | | | | | | | 0
| 0.98 | | | | 00: | | | | 0 | 1.43 | 1. | | 1 | TAL | 436.61 | | | | | | | | | | 0 | 0.98 | | | | 8 | | | | 299 | 498.42 | 2,426 | | 11 11 12 12 13 14 15 15 15 15 15 15 15 | | | | | | | | | | 1 | | 100000 | | - | | | | | | | | | | | 11 12 13 14 15 15 15 15 15 15 15 | | 0 | | | | | Ш | | | | / West / Lo | | 0 | | | | 0.00 | h | | | | 0 | | | This column | ricul ture | 0,00 | | | | | | | | | | 0 | 0.00 | | | | 8: | | | | 0 . | 0.00 | | | 1,22,74 1,22 | mmercial | 0.00 | | | | | | | | | | 0 (| 00.0 | | | | 8 1 | | | | 0 (| 0.00 | | | 1,000 1,00 | ustrial | 0.00 | | | | | | | | | | > 0 | 00.0 | | | | 8 8 | | | , | 2,0 | 0.00 | 0 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | gation | 00.00 | | | | | | | | | |) C | 8 8 | | | | 3 8 | | | | 717 | 27.000 | 00,1 | | 11 11 11 11 11 11 11 1 | o man | 000 | | | | | | | | | |) C | 0000 | | | | 2 8 | | | | · C | 000 | | | 1962 1968 1968 1969 | Alac Supply | 0.03 | | | | | | | | | |) C | 0.00 | | | | 8 8 | | | |) C | 0.00 | | | Color Colo | πAL | 322.72 | | | | | | | | | | 0 | 0.34 | | | | 8 | | | 4 | 212 | 367.02 | 1,815 | | Part | | | | | | | | | | | - 10 | | | | | | | | | | | | | | This color | No. of Parties | 0 | | | | | Ш | | | | - | 5000 | 00.0 | G | | | 00 | | | | , c | o c | | | 1,13,589 5,18 0,100 0 | culture | 0.00 | | | | | | | | | | 0 0 | 00.00 | | | | 3 8 | | | | > 0 | 00.0 | | | 113.55 1 | TITLE CO | 00.0 | | | | | | | | | | 0 0 | 00.0 | | | | 8 8 | | | | 0 0 | 0.00 | 9.17 | | Supply Color Col | usural | 113.89 | | | | | | | | | | 0 0 | 00.0 | | | | 90 | | | | 87 | 130.76 | 607 | | Suggity Color Co | ning | 0.00 | | | | | | | | | | 0 | 0.00 | | | | 00 | | | | 0 | 0.00 | | | 13.584 1.00
1.00 | wer | 0.00 | | | | | | | | | | 0 | 00.00 | | | | 000 | | | | 0 | 00.0 | | | 13.89 518 0.00 0 0.00 0 0.00 0 0.57 2 0.00 0 0.64 4 0.00 0 0.00 0 0.00 0 0.65 0 0.00 0 0.00 0 0.00 0 | olic Supply | 00.00 | | | | | | | | | | 0 | 0.64 | | | | 00. | | | | 0 | 0.64 | | | Name | TAL | 113.89 | | | | | | | | | | 0 | 0.64 | | | | 00 | | | | 87 | 131.40 | 611 | | Particle Caroline | | | | | | | | | | al.C | thurbe Court | ntv. | | | | | | | | | | | | | Fercial 0.000 0 0.000 | ricul ture | 0.00 | | L | | | L | | | | 0.00 | | 0.00 | L | L | | 000 | | | | 0 | 0.00 | | | 1 | mmercial | 00.00 | | | | | | | | | | 0 | 0.00 | | | | 00. | | Ĩ | | 0 | 0.00 | - | | on in the control of | ustrial | 00.00 | | 1 | | | | | | | | 0 | 0.00 | | | | 00 | | | | 0 | 0.00 | Û | | Company Comp | gation | 0.13 | | | | | | | | | | 0 | 0.00 | | | | 00. | | | | 0 | 0.13 | | | Supply 0.00 0 0. | guir | 0.00 | | | | | | | | | | 0 | 0.00 | | | | 00. | | | | 0 | 00.00 | | | Supply 0.00 0 0. | wer | 0.00 | | | | | | | | | | 0 | 0.00 | | | | 00. | | | 1 | 0 0 | 0.00 | | | ture 0.00 0 0.00 | olic Supply | 0.00 | | | | | | | | | |) ¢ | 0000 | | | | 00. | | | | 0 | 0.00 | | | ture 0.00
0.00 <th< td=""><td>-AL</td><td>0.13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>00.00</td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td>2</td><td>0.13</td><td></td></th<> | -AL | 0.13 | | | | | | | | | | 3 | 00.00 | | | | 3 | | | | 2 | 0.13 | | | ture 0.00 0 0.00 | | | | | - | | | | | Cle | veland Cou | ntv | | | | | | | | | | | | | ercial 0.00 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0 | riculture | 00.00 | | | | | | Ĭ | | | 0.00 | | 0.00 | | | | 00 | | | | 0 | 00.0 | 1 | | isia (1.00) (1.0 | nmercial | 00.00 | | | | | | | | | | 0 | 0.00 | | | | 00 | | Ĩ | | 0 | 00.00 | 7 | | on 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0 | ustrial | 00.00 | | j | | | | | | | | 0 | 00.00 | | | | 00. | | | | 0 | 00.0 | | | 1 0.00 0 0 | gation | 00.00 | - | | | | | | | | | 0 | 0.00 | | | | 00. | | | | 0 | 00'0 | Ĭ. | | Supply 0.00 0 0. | ning | 00.00 | | 11 | | | | | | | | 0 | 0.00 | | | - | 00. | | | | 0 | 00.00 | | | Supply 0.00 0 0.00 0 0.00 0 0.32 4 0.00 0 0.00
0 0.00 0 0. | wer | 00.00 | | | | | | | | | | 0 | 0.00 | | | | .00 | | | | 0 | 00.0 | | | 0.00 0 0.00 0 0.00 0 0.32 4 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.03 2 | blic Supply | 00.00 | | | | | | Î | | | | 0 | 0.00 | | | - | 00. | Ĩ | | | 2 | 0.35 | | | | TAL | 00.00 | | | | | | | | | | 0 | 0.00 | | | | 00. | | | | 2 | 0.35 | 4 | | | Quaternary, Alluvial and
Terrace Deposits | eposits | Formation | ition | Sparta-Memphis Sand | phis Sand | Cane River | | Wilcox Group | | Formation | | Nacatoch Sand | Formation | | Trinity Group | - | Undifferentiated | - | All Other Aquifers | | Use Type Totals | 0 | |---------------|--|------------|-----------|---------------|---------------------|----------------------|------------|------------|--------------|----------------|------------------|---------------|---------------|-----------|---------------|---------------|---------------|------------------|------------|--------------------|----------|-------------------|-------| | UseType | Mgal/d | # of Wells | Mgal/d | # or
Wells | Mgal/d | # of Wells Mgal/d We | Mgal/d | - <u>a</u> | Mgal/d W | | W b/legM | (n | Mgal/d Wells | Mgal/d | # or
Wells | Mgal/d | | Mgal/d V | wells N | Mgal/d Wells | | Mgal/d # of Wells | Well | | | | | | Ш | | | | | | Colum | Columbia County | 1000 | | U | | | | | | | - | - | | | Agricul ture | 0.00 | 5 (| 0.00 | | 0.00 | | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | 0 0 | | 1 | | 0.00 | 0 0 | 0.00 | 0 0 | 00.00 | 0 0 | 0.00 | ì | | Corrimercial | 0000 | 0 0 | 0.00 | 0 0 | 0.00 | 72 0 | 00.00 | 0 0 | 00.00 | o c | 00.00 | 0 0 | 00.0 | 0.00 | 0 0 | 0.00 | o + | 00.00 | 0 0 | 000 | 0 0 | 2.13 | 2 6 | | rripation | | · C | 000 | | 000 | | 00.0 | C | 000 | 0 | 000 |) C | | | | 00.0 | (C | 000 |) C | 00.0 | 0 0 | 000 | | | Mining | 0.00 | 0 | 0.00 | | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | | | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | Power | 00.00 | 0 | 00'0 | | 00.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | | | | 0.00 | 0 | 00.00 | 0 | 00'00 | 0 | 0.00 | | | Public Supply | 00.00 | 0 | 00.00 | | 76.0 | - | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 00.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.97 | 15 | | TOTAL | 00.00 | 0 | 00'0 | | 3.10 | | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | 00'0 | 0 | 0.01 | 1 | 00.00 | 0 | 0.00 | 0 | 3.11 | 28 | 1 | | | | | | | | | | Ī | | Conw | Conway County | | L | L | | | - | 3 | - | 1 | + | | | | Agricul ture | 0.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0000 | | | Commercial | 00:00 | 0 7 | 0.00 | | 0.00 | 0 | 0.00 | 0 1 | 0.00 | 0 1 | 0.00 | 0 | | | 0 | 0.00 | 0 , | 0.00 | 0 1 | 0.00 | 0 1 | 0.00 | | | ndustrial | 00.00 | 0 | 0.00 | | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | T | | mgation | 0.87 | 10 | 0.00 | | 0.00 | | 0.00 | 0 0 | 0.00 | 0 (| 0.00 | | | | | 0.00 | 0 9 | 0.00 | 0 0 | 0.00 | 0 0 | 0.87 | 10 | | Mining | 00.00 | 0 | 0.00 | | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | Power | 00.00 | 0 | 0.00 | | 00.00 | | 0.00 | 0 . | 0.00 | 0 0 | 0.00 | | | | | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | Ш | | Fublic Supply | 00.00 | | 0.00 | | 00.00 | 3 | 00.0 | 5 | 0.00 | 5 | 0.00 | 0 . | | | | 0.00 | э, | 00.00 | 5 | 00.00 | 0 ' | 0.00 | T | | TOTAL | 0.87 | 01 | 0.00 | 0 | 0.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.87 | 10 | | | | | | | | | | | | Craighe | Craighead County | | | | | | | | - | | - | + | | | Agriculture | 00.00 | 0 | 00.00 | 0 0 | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | | 0.00 | 00.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | П | | Commercial | 0.07 | 7 | 00.00 | | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | | | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.07 | | | Industrial | 00.00 | 0 | 00.00 | 0 0 | 00.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | | 00.00 | Ú | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | | | rrigation | 329.08 | 3,269 | 00.00 | 0 0 | 1.47 | 15 | 00.00 | 0 | 0.21 | 1 | 0.00 | 0 | 0.00 | 00.00 | | 0.00 | 0 | 0.00 | 0 | 1.14 | 12 8 | 331.90 | 3,297 | | Mining | 0.03 | 1 | 0.00 | 0 0 | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.03 | | | Power | 00.00 | 0 | 00.00 | 0 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | | | Public Supply | 5.23 | 13 | 00.00 | 0 0 | 11.11 | 22 | 00.00 | 0 | 0.25 | 2 | 0.00 | 0 | 0.00 | 00.0 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 16.58 | 63 | | | 334.40 | 3,285 | 00.00 | 0 | 12.58 | 37 | 00.00 | 0 | 0.46 | ო | 0.00 | 0 | 00.00 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 1.14 | 12 | 348.58 | 3,337 | | | | | |] | | | | | | | | | + | | | | | | | - | - | | 1 | | | 6 | | | ľ | | ı | 0 | | | ac | ~ | County | ľ | П | | 0 | | 0.00 | ¢ | 6 | | 0 | П | | Agricul ture | 00.00 | 9 1 | 0.0 | | | | 0.00 | 0 | 0.00 | 0 | 0.00 | D | | | | 0.00 | 5 | 0.00 | o 1 | 0.00 | D | 0.00 | | | Commercial | 0.90 | 9 6 | 00.00 | | 0000 | 0 | 90.0 | 5 0 | 00.00 | > c | 0.00 | > 0 | 00.00 | 0.00 | 5 0 | 00.00 | > c | 0.00 | 5 C | 8 8 |) | 0.00 | | | nusuna | 00.00 | 000 | | | | | 0000 | 0 0 | 5.0 |) , | | o c | | | | | o c | |) C | 0000 | | | 900 1 | | Mining | 0.03 | 1,22,1 | | | | | 8 6 | 0 0 | 0.00 | 4 C | 800 |) (| | | | 8 6 |) C | 800 |) C | 000 | | | 7,1 | | Power | 0.00 | 4 C | 000 | | | | 000 | 0 0 | 0.00 |) C | 000 | 0 0 | | | | 0.00 | 0 | 000 | 0 0 | 0.0 | 0 0 | 0.00 | | | Public Supply | 33 |) vo | 0.00 | | | | 0000 |) C | 00.0 |) C | 0.00 |) C | | | | 00.0 |) C | 0.00 |) C | 0.00 |) C | 5.30 | 17 | | TOTAL | 176.35 | 1,231 | 0.00 | | 4.60 | | 0.00 | 0 | 0.21 | H | 0.00 | 0 | | | | 0.00 | 0 | 0.00 | 0 | 0.47 | | | 1,254 | | | | | | | | | | | Ö | ighead | (East) Co | unty | | | | | | | | | | | | | Agricul ture | 0.00 | 0. | 0.00 | L | 0.00 | | 0.00 | 0 | 00.00 | 0 | 3 | 0 | 0.00 | 00.0 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | Commercial | 0.07 | 2 | 0.00 | 0 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | | 0000 0 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.07 | | | Industrial | 0.00 | | 0.00 | | 0.00 | | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | | | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | Infoation | 154 00 | | 0.00 | | 0.83 | | 00.0 | C | 0.00 | Ċ | 0.00 | C | | | | 000 | <u> </u> | 000 | C | 0.67 | | | 2 061 | | Mining | 00:00 | | 00.00 | | 00.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | | | | 0.00 | 0 | 0.00 | 0 | 0,00 | | | | | Power | 000 | C | 0.00 | | 000 | | 000 | · C | 00.0 | c | 00.0 | C | | | | 00.0 | C | 0.00 | · C | 000 | · c | 000 | | | Public Supply | 00 6 | 7 | 0.00 | | 714 | | 000 | · C | 0.25 | | 0.00 | · c | | | | 000 | · c | 000 | · C | 00.0 | | 11.28 | 20 | | f indication | 150 06 | | | | | | | • | | 1 1 | | | | | | | • | 000 | | | | | 2000 | | | | 7000 | כ | | 707 | | O OF | | 500 | - | 000 | _ | | | | 0.00 | | 000 | | 1 57 | | | | | Quaternary, Alluvial and
Terrace Deposits | Terrace Deposits | _ | Formation | i | Sparta-Memphis Sand | is Sand | CaneRi | iver | Wilcox | Group | Formation | tion | Nacatoch Sand | h Sand | Formation | | Trinity (| Group | Undifferentiated | differentiated | All Other | Aquifers | UseTyp | Use Type Totals | |--|-------------------|-------|-----------------|-------|---------------------|-------------------|--------|---------------|----------------------|-------|---------------------|---------------|---------------|---------------|-----------|-----|----------------------|---------------|------------------|----------------|----------------------|---------------|---------|-----------------| | Use Type Mga | Mgal/d # of Wells | Σ | #
Mgal/d W | to la | Mgal/d # | # of Wells Mgal/d | Mgal/d | # of
Wells | # of
Mgal/d Wells | | Mgal/d | # of
Wells | | # of
Wells | Σ | | # of
Mgal/d Wells | # of
Wells | Mgal/d | # of
Wells | # of
Mgal/d Wells | # of
Wells | Mgal/d | # of Wells | | | | | | | | | | | | Crawf | p.o. | County | | | | | | | | | | | | | | Agricul ture | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | | 00.00 | 0 | | | 0.00 | | 0.00 | | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | | Commercial | 0.00 | 0 | 00.00 |
0 | 0.00 | 0 | 0.00 | 0 | 00.00 | | 0.00 | | | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0000 | 0 | | Industrial | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | 0 0 | 00.00 | 0 0 | 0.00 | | 0.00 | | | | 0.00 | | 0.00 | | 00.00 | 0 0 | 0.00 | 0 | 0.00 | | | | 0.00 | 70 | 00.00 | 0 0 | 00.00 | 0 0 | 00.0 | 0 0 | 00.00 | | 0.00 | | 00.00 | | 00.0 | | 00.00 | | 00.00 | 0 0 | 00.0 | 0 0 | 0.00 | TO TO | | | 00.00 | 5 0 | 00.00 | 0 0 | 0.00 | 0 0 | 00.00 | 0 0 | 0.00 | 0 0 | 00.00 | 0 0 | | o c | 00.0 | 0 0 | 0.00 | 0 0 | 0.00 | 0 0 | 00.0 | | 0.00 | 0 0 | | Public Supply | 00.0 | 0 0 | 000 |) c | 00.0 | 0 0 | 000 | 0 0 | 000 | | 0.00 | | | | 000 | | 000 | 0 0 | 0.00 | 0 0 | 000 | 0 0 | 000 | 0 0 | | | 0.65 | 10 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | Ï | | 00'0 | | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0.65 | 10 | | | | | | | 11 | | | | | Ţ | | | | | | | | | | 1 | | | | | | 3 | , | | - | - | | 10 | | | | | Crittenden County | | | | | | | | | | | | | | | Agriculture | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | | 0.00 | | | | 0.00 | Ï | 00.00 | | 00.00 | 0 | 0.00 | 0 | 0000 | 0 | | Commercial | 0.00 | 0 | 0.00 | 0 | 0,00 | 0 | 0.00 | 0 | 00.00 | | 0.00 | | | | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | | | | m | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | | 0.00 | | | | 0.00 | Ĭ | 0.00 | 0 | 00.00 | 0 | 0.00 | 1 | 0000 | | | rrigation | | 1,438 | 0.40 | H | 00.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | | | | 0.00 | | 00.00 | 0 | 00.00 | 0 | 96.0 | 7 | 275.37 | 1,446 | | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | | | | 0.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | | 00'0 | | | | 0.00 | | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | | Public Supply | | 10 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 3.01 | | 0.00 | | | | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 12.88 | | | | 283.87 1,4 | 1,451 | 0.40 | н | 0.00 | 0 | 0.00 | 0 | 3.01 | 18 | 0.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0 | 0.00 | 0 | 96'0 | 00 | 288.24 | 1,478 | | | | | | | | | | | | _ 8 | Cross County | 2 | | | | | | | | | | | | | | Agriculture | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0,00 | 0 | 0.00 | 0 | | Commercial | 0.00 | 0 | 0.00 | C | 00'0 | 0 | 0.00 | C | 0.00 | | 0.00 | | | | 0.00 | | 0.00 | | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | | Industrial | 0.43 | 4 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | | 0.00 | | | | 0.00 | Õ | 0.00 | | 00.00 | 0 | 0.00 | 0. | 0.43 | 4 | | Irrigation | | 2,336 | 00.00 | 0 | 5.54 | 11 | 0.00 | 0 | 00.00 | | 00.00 | 0 | 00.00 | 0 | 00.00 | Ĭ | 00.00 | 0 | 00.00 | 0 | 12.22 | 75 | 562.08 | 2,422 | | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | .0 | 0.00 | | | | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.0 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | | Public Supply | 0.73 | 4 | 0.00 | 0 | 1.05 | 8 | 00.00 | 0 | 0.32 | 2 | 0.00 | 0 | 0.00 | 0 | 0.00 | | 00.00 | | 00.00 | 0 | 0.00 | 0 | 2.09 | 14 | | | 545,49 2,8 | 2,344 | 0.00 | 0 | 6.58 | 19 | 00.00 | 0 | 0.32 | | 0.00 | 0 | 00.00 | 0 | 0.00 | £ | 00.00 | 0 | 00.00 | 0 | 12.22 | 75 | 564.61 | 2,440 | | 2 | | | | 1 | 187 | Cross | Cross (West) County | ounty | | | | | | | | | | | | | | Agriculture | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00'0 | | 0.00 | | | | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00'0 | 0 | | Commercial | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | | 0.00 | | | | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | | Industrial | | 4 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 0 | 0.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.43 | 4 | | migation | | 1,590 | 0.00 | 0 | 5.15 | 6 | 0.00 | 0 | 0.00 | | 00.00 | 0 | | | 00.00 | | 00.00 | 0 | 00.00 | 0 | 7.12 | 34 | 403.85 | 1,63 | | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0,00 | | 00.00 | | | | 00.00 | | 00.00 | 0 | 00.00 | 0 | 00'00 | 0 | 00.00 | 0 | | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | | 00.00 | | | | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | | | Public Supply | | 4 | 0.00 | 0 | 1.05 | 'n | 0.00 | 0 | 00.00 | | 0.00 | 0 | | 0 | 0.00 | | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 1.78 | 10 | | | 392.75 1,5 | 1,598 | 0.00 | 0 | 6.19 | 14 | 0.00 | ٥ | 0.00 | | 0.00 | | 0.00 | | 0.00 | | 0.00 | 0 | 0.00 | 0 | 7.12 | 젊 | 406.06 | 1,647 | | | | | | | | | | | | Cross | (East) County | ounty | | | | | | | | | | | | | | Agriculture | 0.00 | 0. | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | Ñ | 00.00 | | | | 0.00 | | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00'0 | Î | | Commercial | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | | 0.00 | | 0.00 | | 00.0 | | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | | Industrial | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | 0.00 | | | | 0.00 | | 00:00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | | | | 745 | 0.00 | C | 95.0 | 0 | 0.00 | C | 0.00 | | 0.00 | | 00.0 | | 000 | | 000 | C | 0.00 | C | 517 | 41 | 15823 | 78 | | | | . 0 | 0.00 | 0 | 00.0 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | | | | | C | 0.00 | C | 00.0 | <u> </u> | 00.0 | C | 00.0 | | 00.0 | | | | 000 | | 000 | C | 00.0 | C | 00.0 | Ç | 000 | | | Public Supply | |) = | 000 |) C | 00.0 | o m | 000 |) C | 0.00 | | 00.0 | | | | 00.0 | | 000 | 0 0 | 00.00 | 0 C | 00.0 | o c | 0.00 | . 4 | | | | , | |) | 0000 |) L | | • | | | | | | | | | |) | |) 1 | ; | | 4 | | | | | | | | | | | | | | 4 | | | | 4 | | 000 | • | 000 | | **** | ** | 11 61 4 | | | UseTypeTotals | # of Wells | | 0 | 00 | 00 | 00 | 00 | 00 | 22 | 25 | | 101 | 0,1 | 75 | 72,217 | 00 | 00 | | 2,232 | | 01 | 00 | 00 | 0 9 | | .2 | 7 | | 0 | 0. | 0, | 1,1 | 000 | 0 0 | 2 - | | | 0 0 | 0 0 | 2 0 | 0 | 0. | 0, | • | |--|---------------|-------|-------------|------------|------------|------------|--------|-------|---------------|-------|----------|-------------|------------|------------|------------|--------|-------|---------------|--------|----------|-------------|------------|------------|------------|-------|---------------|-------|-----|-------------|------------|------------|-----------|--------|------------------------|-------|-----|--------|-------------|------------|------------|--------|-------|---------------|-------| | UseT | Mgal/d | | | | | | | | | 0.62 | | 0000 | 00'0 | 4.84 | 383.93 | 000 | 00.0 | 2.24 | 391.01 | | 00'0 | 00'0 | 0.00 | 71.00 | 00'0 | 2.42 | 73.42 | | 0.00 | | | | 0.00 | 0000 | 0.21 | | | 0000 | | | | | | | | Aquifers | * or | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 64 | 0 | 0 | 0 | 2 | | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | | 0 | 0 | 0 | 1 | 0 | 0 0 | > - | | | 0 0 | 0 0 | 0 0 | 0 | 0 | 0 | • | | All Other Aquifers | Mgal/d | | 0.00 | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | | 00.00 | 00.00 | 00.00 | 11.77 | 00.00 | 00.00 | 0.00 | 11.77 | | 00'0 | 00.00 | 0.00 | 00.00 | 0.00 | 0.00 | 00.00 | | 00.00 | 00.00 | 00.00 | 0.03 | 0.00 | 00.00 | 0.03 | 3 | 00.0 | 00.00 | 00.0 | 0.00 | 0.00 | 0.00 | 00.00 | 000 | | | wells | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 0 | O 0 | 000 |) | (|) • | 4 0 | 0 | 0 | 0 | 0 | | | Paleozoic
Undifferentiated | Mgal/d | | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | | 00.00 | 0.00 | 0.00 | 00.00 | 8 6 | 0.00 | 00.00 | | 00.00 | 0.00 | 00.00 | 00.00 | 0.00 | 00.00 | 000 | 200 | 00.0 | 00.0 | 00.00 | 00.00 | 0.00 | 00.00 | 00.00 | 000 | | | | ľ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 0 | 5 0 | 0 0 | 0 | 0 | | C | 0 | 0 | 0 | 0 | 0 0 | 0 | , | | 0 0 | 0 0 | 0 | 0 | 0 | 0 | • | | Trinity Group | Mgal/d | | 0.00 | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | | 00.00 | 00.00 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 00.00 | 0.00 | 00.00 | 0.00 | 00.00 | 000 | 35 | 000 | 00.00 | 00.0 | 0.00 | 0.00 | 00.00 | 00.00 | 000 | | cio
ation | # or
Wells | | | | | | | 0 | | | | | | | | 0 | | | 0 | | | Ŋ | | | | 0 | | | | | | | 0 0 | | | | | | | | | 0 | | | | Tokio
Formation | Mgal/d | | | | | | | | | 0.00 | | 00.00 | | 00.00 | 00'0 | 0 | | | 0.00 | | 00'0 | | | 0.00 | | | 00'0 | | 00.00 | | | Д | | 0000 | 1 | | | 00.0 | | | | la. | | | | Nacatoch Sand | # or
Wells | | | | | | | 0 | 3 | | | L | | 0 0 | Ĭ | | 0 | | | | | 1 | | | | 0 0 | | | | | | | 0 | | | | | | | | | 0 | | | | Nacato | Mgal/d | | | | | | | | | 00.00 | | 0.00 | | 00.00 | 00.00 | | | | 0.00 | | | Ĩ | | 00.0 | | | 00.00 | | 0.00 | | | | | 0.00 | Ī | | | 00.00 | | | | | | | | Clayton
Formation | # or | | 0 | | | | | | | 0 | inty | | 0 0 | | 0 0 | | 0 0 | | 0 | County | 0 0 | M | 0 0 | | | 0 0 | | | - | 0 0 | | | | 0 0 | | 1 1 | 200 | 0 0 | | | 0 | | 0 0 | | | | Mgal/d | allas | | | | | | | | 0.00 | Desha Co | 0.00 | 00.00 | 00.00 | 00.00 | | | | 0.00 | Drew Cot | 00'0 | | | 0.00 | | 1 | 00.00 | | 2 | | | | | 0.00 | | | anklii | 00.0 | | | 1 | | | | | Group | * or | | 1 | 0 | | | | | | 0 | - | | | 0 | 0 0 | | | | 0 | | | | | 0 0 | | | 0 | | 0 | | | | | 0 0 | | | | 0 0 | | | 0 | | Ĩ | | | Wilcox Group | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | | 0.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | | 00'0 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | | 0.00 | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | 000 | 5 | ò | 00.00 | 00.00 | 0.00 | 0.00 | 00.00 | | | | e River | d Wells | | | | 0 | 1 | | | | 0 | | 0 | | | ľ | | | | 0 | | | | 0 0 | | | | | | 1 | 0 | | | | 0 0 | | | | 0 0 | | | 1 | | ĥ | | | Can | Mgal/ | | 0.0 | | | 0.0 | | 00.00 | | 2 0.0 | | | | 4 0.0 | | 0.00 | | | | | | | | | | 9 0.00 | Д | | k . | 0.0 | | |
0.00 | 0 0 | | | | 0 0 | | 0.0 | | 00.00 | 0.0 | | | his Sand | # of Wells | | | | | | | | | | | | | | | | 0 | Ţ | 15 | | | | | | | - | | | | | | 9 | | | | | | | | | | | | | | Sparta-Memphis Sand | Mgal/d | | 0.00 | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.62 | 0.62 | | 0.00 | 00.00 | 4.84 | 0.11 | 00.00 | 00.00 | 2.24 | 7.19 | | 00'0 | 00.00 | 0.00 | 0.00 | 0.00 | 2.42 | 2.42 | | 0.00 | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | 00.0 | | 000 | 0.00 | 0000 | 00.00 | 0,00 | 0000 | 00.00 | | | eld | * or
Wells | | 0 | | | | | 1 | 0 | | | 0 | | h | | 0 | | | | | | | | | | 0 | | | | | | | 0 0 | | | | | | | | | 0 | | | | Cockfield
Formation | Mgal/d | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 00.00 | 00.00 | 00.00 | 2.13 | 00.00 | 0,00 | 0.00 | 2.13 | | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | | 0.0 | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | 00.0 | 200 | 000 | 00.0 | 00.0 | 0.00 | 0.00 | 00.00 | 00.00 | 1 | | luvial and
posits | # of Wells | | 0 | 0 | 0 | 0 | 0 | 0 | - | a | | 0 | 0 | 0 | 2,144 | 0 | 0 | 0 | 2,144 | | 0 | 0 | 0 0 | מממ | 0 | 0 | 539 | 100 | 0 | 0 | 0 | 2 | 0 0 |) m |) u | 5 | (| 0 | 0 6 | 0 | 0 | 2 | 0 | C | | Quaternary, Alluvial and
Terrace Deposits | Mgal/d # | 7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 00.00 | 369.92 | 00.00 | 0.00 | 00.0 | 369.92 | | 00.00 | 00.00 | 0.00 | 71.00 | 00.0 | 0.00 | 71.00 | | 00.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0000 | 0.18 | | 000 | 0000 | 000 | 00.0 | 00.0 | 00.00 | 00:00 | 000 | | | UseType | | Agriculture | Commercial | Industrial | Irrigation | Mining | Power | Public Supply | TOTAL | | Agriculture | Commercial | Industrial | Irrigation | Mining | Power | Public Supply | TOTAL | | Agriculture | Commercial | Industrial | Irrigation | Power | Public Supply | TOTAL | | Agriculture | Commercial | Industrial | rrigation | Mining | Power
Dublic Supply | TOTAL | | 100 | Agriculture | ladustrial | Irrigation | Mining | Power | Public Supply | 10404 | | Nigerify Sectionaries Nigerify Sectionaries Nigerify Sectionaries Nigerify Sectionaries Nigerify Sectionaries Nigerify Sectionaries Nigerify Nigerif | Mgal/d Wells Wells Mgal/d Wells Mgal/d Wells Wells Mgal/d Wells Wells Mgal/d Wells | |---|--| | Columbia | Columbia | | Color Colo | 1 | | 10 10 10 10 10 10 10 10 | 0.000 0.00 | | 1,000 0,00 | 0.000
0.000 0.00 | | 1,000 1,00 | 0.000 0.00 | | Color Colo | 0.000 0.00 | | Color Colo | 0.000 0.00 | | Fig. 10 Color Co | 0 0,000 0 0,000 0 0,000 0 | | CLOS | 0 0,000 0 0,000 0 0,000 0 | | Control Cont | Company Comp | | Color Colo | 0 0.00 0 0.00 0 0.00 0 0 | | Color | Columbia C | | Color Colo | Columbia | | 10,000 | 10 10 10 10 10 10 10 10 | | 10,000 0,0 | 1 | | Part | Columbia | | Color Colo | Columbia | | Cook | 0 0.00 0 0.00 0 0.00 0 0 | | Continue | Control Cont | | Color Colo | Comparison Com | | Color Colo | 1 | | 1 | 1 | | 10,00 0,00
0,00 | 1 | | 10,000 1,0 | 12 0.00 0 0.00 0 0.00 0 0.00 0 | | 10,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0 | 12 0.00 0 0.00 0 0.00 0 0.00 0 | | Paris Pari | 12 0.00 | | Piy 0.000 0 0.000 0 1.54 12 0.00 0 0.00 0 0.00 0 0.00 0 | 12 0.00 | | Cook | 12 0,000 0 | | e 0.000 0 0.00 | Continue | | Color Colo | 0 | | 1 | 0 | | Head | 0 0.00 0 0.03 1 0.00 0 0.00 0 0.00 0 0.00 0 | | Harris H | 3 0.00 0 2.77 16 0.00 0 0.00 0 0.00 0 0.00 0 | | Dividing | 0 0.00 0 0.00 1 0.00 0 0.01 1 0.00 0 0.00 0 0.00 0 0.00 0 | | Pige | 1 | | Poly | 4 0.00 0 0 3.83 11 0.00 0 0.50 5 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.0 | | 459.34 2,209 0.00 0 0.08 0 0.08 0 0.00 0 0.06 0 0.06 0 0.05 0.05 0 | 4 0.00 0 0 6.66 31 0.00 0 0 0.50 5 0.00 0 0
0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0.00 0 0.00 0 0 0.0 | | e 0.00 0 | Greene (West) County 0 0,000 | | e 0.00 0 | O 0,000 | | e 0.00 0 0.000 | 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0
0,000 0 0,00 | | 38 0.00 | 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 | | 289.23 1,482 0.00 0 0.0 | 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0, | | 255,43 1,482 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 | 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00
0 0.00 | | 1 1000 0 0000 0 0000 | | | | | | 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0.00 0.00 0 0.00 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.0 | | | 289.30 1.484 0.00 0 0.00 0 0.00 0 1.56 7 0.00 0 0.01 1 | 0 0.00 0 1.56 7 0.00 0 0.01 1 0.00 0 0.00 0 | | Ngal/a Wells Mgal/a Wells Mgal/a Wells Mgal/a Wells Wells Mgal/a Wells Wells Mgal/a Wells We | Cayton Tokio Paleozoic Formation Trinity Group Undifferentiated All Other Aquifers # of o | Mgal/d Wells Mgal/d Wells Mgal/d Wells | | 2 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.50 2 17 | 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 0 000 0 000 0 000 0 000 0 000 0 000 0 | 0.00 0 0,49 4 0.00 0 0.00 0 0.00 0 0,00 0 | 0.00 0 0.49 4 0.00 0 0.00 0 0.00 0 0.50 | Hempstead County | 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 0.00 0 0.00 1 0.00 0 0.00 0 0.00 0 0.00 | 0 000 0 000 0 000 0 000 0 000 0 000 | 0 0000 0 0000 0 0000 0 0000 0 | | 0.00 0 0.44 6 1.96 11 0.00 0 0.00 0 0.00 0 | 0.00 0 0.44 7 1.96 11 0.00 0 0.00 0 0.00 0 | Spring County | 00:00 0 0:00 0 0:00 0 0:00 0 0:00 0 | 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 0.00 | 0.00 0 0.00 0 0.00 0 0.00 0 0.01 1 0.00 0 | 0.00 0 0.00 0 0.00 0 2.33 2 0.00 | Howard County | 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 0 000 0 000 0 000 0 000 0 000 0 000 0 000 | 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 0 00:0 0 00:0 0 00:0 0 00:0 0 | 0.00 0 0.00 0 0.62 5 0.00 0 0.00 0 0.00 | 0.00 0 0.62 5 0.00 0 0.00 0 0.00 | endence County | | | 0.00 0 00.00 0 00.00 0 00.00 0 00.00 | 0 0000 0 0000 0 0000 0 0000 0 | | 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | |--|---|--|------|--|---|--|---|---------------------------------------|---|---|------------------|------------------------------------|---|-------------------------------------|-------------------------------|------|--|--|---------------|-------------------------------------|---|---|---|------|---|----------------------------------|---------------|---|---|---|---|-------------------------------|---|----------------------------------|----------------|------|------|--------------------------------------|-------------------------------|-----|--| | Ngal/d Wells Mgal/d # of Wells Mgal/d Wells Mgal/d # of | River Wilcox Group | Wells Mgal/d V | 0000 | 0 0.03 | 0 0.03 | 0 1.98 | 0 0.00 | 0 0.00 | 0 3.06 | 60'5 0 | Her | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | 00.00 | 0 0.00 | | 00.00 | 00.00 | 00.00 | 00.00 | 00:0 | 00.00 | 00.00 | Í | 00.00 | 0.00 | 00.00 | 00.00 | 00.00 | 00.00 | 0 0.00 | 000 | 0000 | 0000 | 00.00 | 00.00 | 000 | 00.00 | | Mgal/d Mgal/d Mgal/d Occord | | # of Wells | c | . 0 | o | m | 0 | 0 | ਜ : | 4 | | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | | 0 | 0 | 0 0 | 0 0 | 0 0 | 0 | 0 | - | 0 0 |) C | 0 | 0 | • | 0.00 | L | | | | | | | | | | | | | | S.L | l | | | | | | 0.00 | | | y, Alluvial and | # of Wells | 1.19 6 | | Use Type Totals | Mgal/d #ofWells | | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | 0.88 13 | | | 0.00 | 0.00 | 77.7 2 77.7 7.77 | | 0.00 | 0.45 13 | 474.11 2,771 | | 0 000 | 0.00 | 34.92 36 | 216.72 1,602 | 1 1 1 9 | 12.83 33 | 265.67 1,674 | | 0.00 | 1.00 | 0.00 | 0.27 14 | 0.00 | 0.00 | 1.27 15 | 4 | 0 | 0.00 | 0.00 | 14.40 200 | 0.00 | 0.00 | | 10000 | |---------------------|-------------------------|----------|--------------|------------|-----------|-----------|--------|------------------------|---------|----|----------------|--------------|------------|------------------|--------|-------|---------------|--------------|---|------------------|------------|-----------|--------------|---------|---------------|--------------|---------------|-------------|------------|------------|-----------|--------|-------|---------|-----|------------------|-------------|-----------|-----------|--------|-------|---------------|-------------| | | - | | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 14 | | 0 | 0 (| | | 0 | 0 | | - | c | 0 | | | 0 0 | | 34 | | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | - | 0 0 | 0 | 15 | 0 | 0 | 0 | | | All Other Aquifers | # or | | 00.00 | 0.00 | 0.00 | 0.00 | 00 00 | 9 6 | 00.0 | | | 0.00 | 00 | 00.00 | 00'00 | 00 | 0.00 | 80 | _ | 00.0 | 0.00 | 0.00 | 00 | 0.00 | 0.00 | 0.00 | _ | 0,00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 | | - | 00.00 | 8 8 | 0.59 | 0.00 | 00 | 00.00 | | | All Oth | | | | | | | 0.00 | | | | | | | | | | | | | | | | | | | 6 | | | | | | | | 0.00 | | | | | | | | | | | Undifferentiated | Wells | | | | | | 0 | | | | | | 0 | | | | 3 | | | | | | | 0 0 | ĺ | | | | | | | | 0 0 | | | | | | 0 | | Ī | | | | Undiffer | Mgal/d | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.0 | 0.88 | | | 00.00 |
00.00 | 0.00 | 0000 | 00.00 | 0.00 | 0.00 | | 000 | 00.00 | 00.00 | 0.00 | 00.00 | 0.00 | 00.00 | | 00.00 | 00.00 | 00.00 | 0.00 | 00.00 | 0.00 | 0.00 | | 000 | 00.00 | 0.00 | 00.00 | 00.00 | 00.00 | 00.00 | | | Trinity Group | wells | | 0 | | 0 | | 0 0 | | | | | | 0 0 | | | | 0 | | | C | | | | 0 0 | | | | 0 | | 0 | | 0 | | 0 | | | 0 0 | | 0 | | Ì | ì | | | Trinity | | | | | | | | 00.00 | | | | | | 00.0 | | | | 0.00 | | 000 | | | | 0.00 | | 00.00 | | 00.00 | | | | | 0.00 | 1 | | W. | 0000 | | | | | 0.00 | | | ition | # or
Wells | | 0 | | 0 | | | 0 0 | | | | | 0 8 | | | 0 | 0 | | | | 0 | ń | | 0 0 | | 0 | | | 0 | | | | | 0 | | | 0 0 | | 0 | | | | | | Formation | wells Mgal/d | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00'0 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | wells | | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | | | 0 | 0 0 |) C | 0 | 0 | 0 | 0 | | C | 0 | 0 | 0 | 0 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | |) C | 0 | 0 | 0 | 0 | 0 | | | Nacatoch | Mgal/d | | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | 00.0 | 00.00 | | | 0.00 | 0.00 | 00.00 | 0.00 | 00.00 | 00.00 | 00.00 | | 00.0 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 00.00 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | | 000 | 00.00 | 0.00 | 0.00 | 0.00 | 00.00 | 00.00 | | | | - 20 | Α. | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | | 40 | 0 | 0 8 |) C | 0 | 0 | 0 | 0 | | | 0 | | 0 | 0 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 0 | 0 | 1 1 | 100 | 5 0 | 0 0 | 0 | 0 | 0 | 0 | | | Formation | Mgal/d | rd Count | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | | Jackson County | 0.00 | 0.00 | 0000 | 0.00 | 0.00 | 00.0 | 0.00 | | Defresson County | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - de constant | 0.00 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Lafayette County | 00.00 | 0.00 | 0.00 | 00.00 | 0.00 | 0.00 | | | dno. | 1.354 | Iza | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | | Jack | 0 | 0 9 | o c | 0 | 0 | 0 | 0 | | Jeffe | 0 | 0 | 0 | 0 0 | 0 | 0 | - 40 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | Lafay | o c | 0 | 11 | 0 | 0 | 0 | | | Wilcox Group | Mgal/d | | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 80.0 | 0.00 | | | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | 00.00 | 0.00 | | 0.00 | 00.00 | 00.00 | 0.00 | 00.00 | 0.00 | 0.00 | | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 000 | 00.00 | 00.00 | 0.01 | 00:00 | 0.00 | 0.00 | | | | - | | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | | | 0 | 0 0 |) C | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | - | 0 0 | 0 | 0 | 0 | 0 | Ŋ | | | Cane River | # of Wells Mgal/d Wells | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | | | 0.00 | 0.00 | 0.00 | 0,00 | 0.00 | 00.00 | 00.00 | | 00.0 | 0.00 | 00.00 | 0.00 | 00.00 | 0.00 | 00'0 | | 00'0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.40 | | | | Wells | | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | | | 0 | 0 (| o - | 1 0 | 0 | 0 | 1 | | - | 0 | 28 | - | 0 0 | 33 | 62 | | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | 7 | 0 0 | 0 0 | 22 | 0 | 9 | 4 | | | Sparta-Memphis Sand | Mgal/d #o | | 0.00 | 00.00 | 0.00 | 00.00 | 00.00 | 00.00 | 0.00 | | | 0.00 | 0.00 | 0.00 | 00'00 | 0.00 | 00.00 | 0.40 | | Juuu | 0,00 | 29.42 | 0.05 | 0.00 | 12.83 | 42.29 | | 00.00 | 0.00 | 00.00 | 0.00 | 0,00 | 00,00 | 00.0 | | i di | 0.00 | 00.00 | 0.05 | 00.00 | 00.00 | 0.10 | | | | wells | 2. | 0 | 0 | 0 | 0 | 0 0 | o c | 0 | | | 0 | 0 | o c | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 6 | 0 | 2 | | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | , | 0 0 | 0 0 | 1 | 0 | 0 | 0 | | | Formation | Mgal/d | | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | | | 0.00 | 0.00 | 00.00 | 0.00 | 00.00 | 0.00 | 0.00 | | 00.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.19 | | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 000 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | _01 | | 0 | 0 | 0 | 0 | 0 0 |) c | 0 | | | 0 | 0 , | 2 751 | 0 | 0 | 13 | 2,765 | | 0 | 0 | 00 | 1,601 | el C | 0 | 1,610 | - | 0 | H | 0 | 14 | 0 | 0 0 | 15 | | - | 5 0 | 0 0 | 151 | 0 | 0 | 0 | | | Terrace Deposits | # of Wells | | 0 | 0 | 0 | 0 | 0 0 | 2 0 | 0 | | | 9 | ٥, | | | Ó | 5 | | | l | 0 | Ö | | 10 | 0 | | | 0 | 0 | 0 | 7 | 9 | 0 0 | 2 2 | | | 2 0 | 2 0 | 4 | 0 | Q | Q | | | Terrace Deposits | Mgal/d | | 00.00 | 0.00 | 0.00 | 00.00 | 0.00 | 00.00 | 0.00 | | | 00'00 | 0.00 | 472.25 | 0.00 | 00.00 | 0.45 | 472.91 | | 0000 | 0.00 | 5.50 | 216.68 | 0.01 | 00'00 | 222.19 | | 0.00 | 1.00 | 0.00 | 0.27 | 0.00 | 00.00 | 1.27 | | | 0.00 | 0.00 | 13.74 | 00.00 | 00'00 | 00.00 | | | | UseType | | Agricul ture | Commercial | ndustrial | rrigation | Mining | Power
Public Supply | TOTAL | | | Agricul ture | Commercial | Industrial | Mining | Power | Public Supply | TOTAL | | Agriculture | Commercial | ndustrial | rrigation | Mining | Public Supply | TOTAL | | Agriculture | Commercial | Industrial | rrigation | Mining | Power | TOTAL | | | Agriculture | ndustrial | rrigation | Mining | Power | Public Supply | 200 200 200 | | | Quaternary, Alluvial and
Terrace Deposits | Alluvial and
eposits | Cockfield
Formation | Cockfield
Formation | Sparta-Memphis Sand | his Sand | Cane River | - | Wilcox Group | | Clayton
Formation | Nacatoch Sand | | Tokio
Formation | _ | Trinity Group | Pale | Paleozoic
Undifferentiated | All Other Aquifers | Aquifers | UseTypeTotals | otals | |--|--|-------------------------|------------------------|------------------------|---------------------|----------------|--------------|-----|----------------------|---------------|----------------------|---------------|---------|----------------------|--------|---------------|-------|-------------------------------|--------------------|---------------|---------------|--------| | UseType | Mgal/d | # of Wells | Mgal/d | Wells | Mgal/d | # of Wells | Mgal/d Wells | 140 | # or
Mgal/d Wells | 2 | # or
Wells | Mgal/d V | wells M | # or
Mgal/d Wells | 0.00 | # or | | # or
Wells | Mgal/d | # or
Wells | Mgal/d # | ofWell | | A contraction of the | 90 0 | | 000 | | 000 | C | | | Lawr | wrence County | 400 | 000 | C | 000 | 000 | | 00.0 | | 00 0 | C | 000 | | | Agriculture | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | 0 | | | | | 0 0 | 00.00 | 0 0 | | | | | | 00.0 | 0 0 | 00.0 | | | Commercial | 00.00 | | 0.00 | | 0.00 | 5 6 | | | | | | 00.0 | 0 0 | | 00.00 | | | o c | 00.0 | 0 0 | 00.00 | | | Intrastion | 379.80 | 98 | 00.0 | 0 0 | 0.22 | , | | | | | 0 0 | 00.00 | 0 0 | | | | | | 0.62 | 2 | 381.21 | 1.866 | | Mining | 0000 | 1 | 000 | | 00.0 | 1 C | | | | | | 0000 | | | | | | | 2000 | 4 C | 000 | 1 | | Power | 00.00 | | 00.00 | | 00.0 | 0 0 | | | | | | 0.00 | 1 0 | | 0.00 | | | | 00.0 | 0 | 000 | | | Public Supply | 0.05 | | 000 | | 0.00 | 0 0 | | | | | | 00.0 | 0 0 | | | | | | 00.0 | 0 | 0.62 | | | TOTAL | 379.85 | 1,86 | 0.00 | | 0.22 | . . | 00.00 | 0 | 0.00 | | | 0.00 | - | | | 0 | | | 0.62 | 7 | 381.83 | 1,883 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | 000 | | 0000 | L | 3 | | | | | e le | | 000 | (| | | | | | 000 | | 000 | | | Agriculture | 00.00 | 0 | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | | 0.00 | 0.00 | 0 0 | 90.00 | 0 0 | 0.00 | 0.00 | | 00.00 | | 0.00 | 0 | 0.00 | | | Collinger | 0000 | | 0000 | | 0.00 | 0 0 | | | | | | 00.0 | o c | | ij | | | | 00.0 | 0 0 | 00.0 | l | | rrigation | 267.78 | 216 | | | 00.0 | 0 0 | | | | | | 000 | 0 0 | | | | | | 8 23 | 75 | 276.01 | 2 243 | | Mining | 000 | | | | 00.0 | 0 0 | | | 0 00 0 | | | 00.0 |) C | | 000 | | | | 000 | 2 | 000 | 1 | | Power | 0.00 | | 0.00 | | 0.00 | 0 | | 0 | | | | 0.00 | 0 | | | 0 0 | | 0 | 0.00 | 0 | 0.00 | | | Public Supply | 00.00 | | 00.00 | | 0.99 | 2 | 00.00 | | | | | 00.00 | 0 | | | | | | 0.29 | 2 | 1.33 | | | TOTAL | 267.78 | 2,168 | 0.00 | | 66.0 | 17 | | | 0.05 | | 1.7 | 00.00 | 0 | 00.00 | 00.00 | | | | 8.52 | 11 | 277.34 | 2,248 | | | | | | | | 71
 | | | | | | 11 | | | 1 | | | | | | | | | | | | | | | | | ۳ | % e | | | 4 | | | | | | | | | | | Agriculture | 0.00 | | 0.00 | | 0.00 | 0 (| | | | | | 0.00 | 0 . | | | | | | 0.00 | 0 | 0.00 | | | Commercial | 0000 | 0 | 0.00 | 0 0 | 0.00 | 00 | | 0 0 | 0.00 | 0.00 | 00 | 8 6 | 0 0 | 00.00 | 0 0.00 | 0 0 | 0.00 | 00 | 00.00 | 00 | 0.00 | | | Industrial | 23467 | 901 | | | 000 | o c | | | | | | 8 8 | 3 6 | | | | | | 5.25 | 2.5 | 239.92 | 2 023 | | Mining | 00.0 | | | | 00.0 | 0 0 | | | | | | 0.00 | 0 | | | | | | 0.00 | i C | 0.00 | j | | Power | 00.0 | | | | 000 |) C | | | | | | 0.00 | 0 0 | | | | | | 0.00 | 0 0 | 0.00 | | | Public Supply | 0.00 | 0 | | | 0.99 | 2 | | | | | | 0.00 | 0 | | | | | | 0.00 | 0 | 0.99 | | | TOTAL | 234.67 | | | | 0.99 | N | | 0 | 0.00 | | | 0.00 | 0 | | 00.00 | | | | 5.25 | 57 | 240.91 | 2,025 | | | | | | | | | | | Lee | East) County | unty | | | | | | | | | | | | | Agriculture | 0.00 | | | Ĭ | 0.00 | 0 | | 0 | 0.00 0 | | | 00.00 | 0 | 0.00 | 00.00 | | 00.00 | | 0.00 | 0 | 0.00 | | | Commercial | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 0 | 00.00 | 0 | 00.00 | 0 | | 00.00 | 0 0 | | 0 | 0.00 | 0 | 0.00 | | | Industrial | 0.00 | | | | 0.00 | 0 | | | | | | 0.00 | 0 | | | | | | 0.00 | 0 | 0.00 | | | Irrigation | 33.11 | | | | 00.00 | 0 | | | | | | 0.00 | 0 | | | | | | 2.97 | 18 | 36.09 | 220 | | Mining | 0.00 | | | | 0.00 | 0 | | | | | | 0.00 | 0 | | | | | | 0.00 | 0 | 00.00 | | | Power | 0.00 | | | | 0.00 | 0 | | | | | | 0.00 | 0 | | | | | | 0.00 | 0 | 0.00 | | | Public Supply | 0.00 | | 0.00 | | 0.00 | 0 6 | | | 0.05 | 0.00 | | 0 0 | 0 6 | 00.0 | 0.00 | | 00.00 | | 0.29 | 2 5 | 0.34 | m 0 | | O ME | 17.00 | | | | 20.0 | • | | | | | | 900 | • | | | | | | 3.50 | 2 | 26.47 | | | | | | | | | | | | | coln | | | 1 | | | | | | | | | | | Agriculture | 00.00 | | 00.00 | | 00.00 | 0 | | | | | | 0.00 | 0 | | | | | | 0.00 | 0 | 0.00 | | | Commercial | 0.00 | | 00.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | | | 0.00 | 0 | | * | 0 | | 0 | 0.00 | 0 | 00.00 | | | Industrial | 0.00 | | 00:00 | J. | 0.00 | 0 | | | | | | 00.00 | 0 | | | i | | | 0.00 | 0 | 0.00 | | | migation | 217.43 | 1,21 | 00.00 | | 0.21 | 2 | | 0 | 0.00 | | 0 | 00.00 | 0 | | | 0 0 | | | 1.38 | 00 | 219.02 | 1,225 | | Mining | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | | | | | | 0.00 | 0 | 00.00 | | | | | 0.00 | 0 | 0.00 | | | Power | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | | | 0.00 | Ĭ | 0 | 0.00 | 0 | 0.00 | 00.00 | | 00.00 | | 0.00 | 0 | 0.00 | | | Public Supply | 0.00 | | 00.00 | | 1.60 | ō) | 00.00 | 0 | 0.00 | | 0 | 00.00 | 0 | | 00.00 | 0 0 | Ĭ | Ĭ | 0.00 | 0 | 1.60 | | | TOTAL | 217.43 | 1,215 | 0.00 | 0 | 1.81 | 11 | | | 0.00 | 0.00 | | 00.0 | 0 | 00.00 | 00.00 | Ì | 0.00 | | 1.38 | 00 | 220.61 | 1,234 | Use
VSe | Quaternary, Alluvial and Terrace Deposits Mgal/d # of Wells | Σ | Cockfield Formation # of | Sparta-Memphis Sand
Mgal/d # of Well | ≥ 0 | Cane River
of
Mgal/d Wells | 400 | Wilcox Group
of
Mgal/d Wells | Clayton
Formation | ton
ation
of
Wells | Nacatock
Mgal/d | Σ | Tokio
Formation
of
Mgal/d Wells | | Trinity Group # of | | Paleozoic
Undifferentiated
of
Mgal/d Wells | All Other
Mgal/d | All Other Aquifers # of Mgal/d Wells | Use Type Totals Mgal/d # of Wells | |---------------|---|-------|--------------------------|---|-----|--------------------------------------|-----|--------------------------------------|----------------------|-------------------------------|--------------------|------------|--|------|--------------------|--------|---|---------------------|--------------------------------------|-----------------------------------| | | | | | | | | | | | sunty | | | | | | | | | | | | Agriculture | 00.00 | 0 | 0.00 | 00.00 | 0 | 0.00 | 0 | | | | 0.00 | 0 | 00'0 | | 00.00 | 00.00 | | 00'0 | | 0000 | | Commercial | 0.08 | न | | 0.00 | 0 | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | | | | | | 0.08 | | Industrial | 0.00 | 5 | | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 0.00 | 0 | 0.00 | 0 | | 0 0000 | 0 | | 0 | 0.00 | | rrigation | 0.57 | 10 | | 0.00 | 0 0 | 0.00 | 0 | | | | 0,00 | 0 0 | 0.00 | | | | | | | 0.57 | | Mining | 00:00 | 0 | | 0.00 | 0 , | 0.00 | 0 | | | | 00.00 | 0 | 0.00 | | | | | | | 0.00 | | Power | 00:0 | 0 1 | | 0.00 | 0 1 | 0.00 | 0 ' | | | | 0.00 | 0 1 | 0.00 | 0 0 | | | | | | 0.00 | | Public Supply | 0.58 | 7 | | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 0.00 | 0 | 0.00 | | | | | 0.00 | | 0.58 | | TOTAL | 1.23 | 23 | 0.00 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0 | 0.00 | | 00.00 | 0.00 | | | | 1.23 | | | | | | | | 7 | | - | Town County | 1 | | | | | | | | | | | | Agriculture | 0.00 | 0 | 0.00 | 00.0 | 0 | 0.00 | 0 | 0 00 0 | 00.0 | 0 | 00.0 | d | 0.00 | | 0.00 | 00.0 | | 00.0 | | 0.00 | | Commercial | 00.0 |) (| | 00.00 |) (| 00.0 |) C | | | | 000 |) C | 000 | | | | | | > < | 000 | | in itel cial | 0000 | 0 0 | 0000 | 00.0 | 0 0 | 0000 | 0 0 | 0000 | | 0 0 | 8 6 | 0 0 | 20.0 | | | | | | | 0000 | | Industrial | 0.00 | 0 0 | | 0000 | 0 0 | 0000 | 0 0 | | | | 0000 | 0 0 | 00.0 | 5 0 | | 00.0 | 0 0 | | | 0.00 | | Ranon. | 0.1.3 | 7.7 | | 0.00 | 0 0 | 00.00 | 0 0 | | | | 00.00 | 0 0 | 0.00 | | | | | | 0 0 | 0.1.0 | | Mining | 00.00 | 0 0 | | 0.00 | 0 0 | 00.00 |) (| | | | 00.00 | 0 0 | 0000 | | | | | | | 0.00 | | Power | 00:00 | o , | 0.00 | 0.00 | 0 (| 0.00 | 0 1 | 0.00 | 0.00 | 0 1 | 0.00 | 0 (| 0.00 | 0 1 | | | | | 0 | 0.00 | | Public Supply | 00:00 | 0 | | 0.00 | 0 | 0.00 | 0 | | | | 0.00 | 0 | 0.00 | | | | | | | 00.00 | | TOTAL | 0.15 | 12 | 0.00 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.15 | | | | | | | | - | - | - | noke County | 2,40 | | | | | - | | | | | | | Agriculture | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0 | 0,00 | | | 00'00 | 0 | 00.00 | | 0.00 | 00.00 | | 00'0 | L | 00'0 | | Commercial | 0.00 | 0 | | 0.00 | 0 | 0.00 | 0 | | | 0 | 00.00 | 0 | 00.0 | 0 0 | | 00.00 | 0 0 | | 0 | 0.00 | | Industrial | 0.75 | m | | 0.00 | 0 | 0.00 | 0 | | | | 0.00 | 0 | 0.00 | | | Ű | Ì | | | 0.75 | | Irrigation | | 2,565 | | 14.37 | 53 | 0.00 | 0. | 1.81 | | 0 | 00.00 | 0 | 0.00 | | | | | | 36 | 371.64 | | Mining | | 0 | | 0.00 | 0 | 0.00 | 0 | | | Ĭ | 0.00 | 0 | 0.00 | | | | | j | | 0.00 | | Power | 0.00 | 0 | | 0.00 | 0 | 0.00 | 0 | | | | 0.00 | 0 | 0.00 | 0 0 | | 0 0.00 | ĺ | | | 00'0 | | Public Supply | 5.14 | 27 | 0.00 | 1.76 | 12 | 0.00 | 0 | 0.63 2 | | 0 | 00.00 | 0 | 0.00 | | 00.00 | 0.00 | 1 | 00.00 | | 7.53 | | TOTAL | 354.48 2,5 | 2,595 | 0.00 | 16.13 | 65 | 0.00 | 0 | 2.44 8 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0.00 | | 6.87 | 37 | 379.92 | | | | | | | | | | | | | | | 7 | | | | | | | | | | 2000 | - | | | 1 | 200 | | Ĭ | gl | | 30.0 | 1 | 1 | N. | | II. | | | | 2.50 | | Agriculture | 0.00 | 0 0 | 0.00 | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | | 0 0 | 0.00 | 0 0 | 0.00 | 0 0 | | 0.00 | 0 0 | | 0 | 0.00 | | Commercial | 0.00 | 0 0 | | 0.00 |) c | 00.00 | 0 0 | | | | 00.00 | 0 0 | 00.00 | | | | | | | 00.00 | | industrial | 0000 | 0 | | 0.00 | 0 0 | 00.00 | 0 0 | | | | 00.00 | 5 0 | 0000 | | | | | | | 0000 | | irrigation | 0.00 | 0 0 | | 0.00 | 0 | 0.00 | 0 0 | | | | 00.00 | 0 0 | 0000 | | | | | | | 0.00 | | Ninne | 0.00 | 0 0 | 0.00 | 0,00 | 0 | 00.00 | 0 0 | 0000 | 0.00 | | 00.00 | 5 C | 00.00 | 5 0 | 00.00 | 00.00 | | 00.00 | | 00.00 | | Public Supply | 0000 | 0 0 | | 0000 | 0 0 | 00.0 | 0 0 | | | 0 0 | 00.0 | 0 0 | 0000 | | | | | | | 00.0 | | Tel | 00:0 | 0 | 0000 | 00.0 | 0 0 | 00.00 | 0 0 | | | | 00.00 | 0 | 00.0 | | | | | | | 0000 | | IOI AL | Boro | 5 | | 0000 | 3 | 8 | 5 | | | 3 | 8.0 | 5 | 000 | 5 | | | | | | 00'0 | | | | | | | | | | Σ | arion Cor | nty | | | | | | | | | | | | Agriculture | 0.00 | 0 | 0.00 | 0.00 | 0 | 00.00 | 0 | 0.00 | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 0. | 0.00 | 00.00 | 0 0 | 0.00 | 0 | 00'0 | | Commercial | 00.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0 | 0.00 | 00.00 | | 0.00 | 0 | 0.00 | | 00.00 | | | 00.00 | | 00.0 | | Industrial | 00.0 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0 | 0.00 | 00.00 | | 00.00 | 0 | 0.00 | | 0.00 | 00.00 | j | 00.00 | | 00.00 | | Irrigation | 00:00 | 0 | | 00.00 | 0 | 0.00 | 0 | | | | 0.00 | 0 | 0.00 | | 0.00 | 00.00 | | | | 00.0 | | Mining | 0.00 | 0 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 2 | 0 | 0.00 | 0 | 0.00 | 0 0 | | | | | | 00.00 | | Power | 0.00 | 0 | | 0.00 | 0 | 0.00 | 0 | | | | 00.00 | 0 | 0.00 | | | 00.00 | 0 | | 0 | 0.00 | | Public Supply | 00:00 | 0 | | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 00.00 | 0 | 00.00 | 0. | 0.00 | 00.00 | | Ì | | 00.0 | | TOTAL | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 00.00 | 0 | 00.00 | | 00.00 | 00.00 | | 00'0 | | 0.00 | Quaternary, Alluvial and | | Cockfield | Sparts-M | Sparta-Memphis Sand | Š | Cane River | Wilcox | Group | Clayton | ton | Nacatoch Sand | | Tokio | Trinity | 2 | Paleozoic
Undifferentiated | zoic | All Other | Aquifere | Use Type Totals | olu to L |
--|---------------|--------------------------|------|-----------|----------|---------------------|----|------------|--------|---------------|-----------|--------|---------------|-----------|-------|---------|---------------|-------------------------------|---------------|-----------|---------------|-----------------|------------| | Fig. | Use Type | | Σ | | | # of Wells | Σ | * 5 | | # of
Wells | Σ | | Mgal/d | Σ | | Mgal/d | # of
Wells | Mgal/d | # of
Wells | Mgal/d | # of
Wells | Mgal/d | # of Wells | | This color Thi | | | | | | | | | | | iller Cou | nty | | | | | | | | | | | | | 1 | Agriculture | | | 00. | | | Д | | | | 00.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 00.00 | | 00.00 | 0 | | 1 | Commercial | | | 00. | | | | | | | 00.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 0.00 | | 0.01 | 4 | | This color Thi | Industrial | | | 00. | | | | Ĭ | | | 0.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 0.00 | | 00.00 | 0 | | 1. 1. 1. 1. 1. 1. 1. 1. | Irrigation | | | 00: | | | | | | | 0.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 0,00 | | 6.45 | 74 | | 1 | Mining | | | 00. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 00'00 | | 00.00 | 0 | | Fig. 10 | Power | | | 8 | | | | | 0.0 | | 0.00 | | 00.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0 | | The color | Public Supply | | | 00. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 0.11 | 2 | | The color | TOTAL | | | 9. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 6.57 | 8 | 1 | | | | | | | L | | | L | n iddissi | | - | - | | | | | | | | | | | 1,000 1,00 | Agriculture | | | 00. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0 | | 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, | Commercial | | | 00. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 00.00 | 0 | | 1,14,150 2,581 1,000 0 0,000 0 0,000 0 0,000 0 | Industrial | | | .00 | | | | | 2.2 | | 0.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 0.43 | | 3.28 | 16 | | 1,100 1,10 | Irrigation | | | 00. | | | ľ | Ĭ | 0.1 | | 0.00 | Ĭ | 0.00 | 0 | | | 0 | 00.00 | 0. | 0.00 | | 348.12 | 2,392 | | Fig. 10 | Mining | | | 00. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | Ĭ | | 0 | 00.00 | 0 | 0.00 | | 00.00 | 0 | | This color Thi | Power | 0.00 | 1 0. | 00. | | | | | 0.2 | | 0.00 | | 00.00 | 0 | | | 0 | 00.00 | 0 | 0.00 | | 0.23 | 4 | | Figure Color Figure Figure Color Figure Fig | Public Supply | | | .00 | | | | | 14.1 | | 0.00 | ì | 00.00 | 0 | | | 0 | 00.00 | 0 | 0.27 | | 14.41 | 26 | | Matrice Coop | TOTAL | | 1 | 00. | | | | | 16.6 | | 0.00 | *** | 0.00 | 0 | | Ē | 0 | 0.00 | 0 | 0.70 | | 366.04 | 2,438 | | The color | | | | | | | | | | | | | | - | | | | | | | | | | | The color of c | | | | | | | | | | | nroe Co | | | | | | | | | | | 1 | | | Single S | Agriculture | | Ì, | 00 | | | | | | | 0.00 | | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 0.00 | н. | | 1 1 1 1 1 1 1 1 1 1 | Commercial | | | 00. | | | | | 0.0 | | 0.00 | | 00.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 0.00 | C . | | 1,000 1,00 | Industrial | | | 00 | | | | | 0.0 | | 0.0 | | 0.00 | 0 | | | 0 | 0.00 | | 0.00 | | 0.00 | | | Color Colo | Irrigation | | | .88 | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 309.47 | 2,329 | | Color Colo | Mining | | | 00 | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 00.00 | 01 | | 1999 1999 1999 1999
1999 | Power | | | 00 | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 0.00 | | | 349346 2,223 0,585 9 | Public Supply | | | 00 | | | | | | | 0.00 | | 00.00 | 0 | | | 0 | 0.00 | | 00.00 | | 1.30 | 9 | | Marke 1,000 10 1,000 10 1,000 10 1 | TOTAL | | | 88 | | | | | | | 0.00 | | 0.00 | 0 | | 1 | 0 | 0.00 | 0 | 0.00 | | 310.86 | 2,337 | | Particular Course | | | | - | The color of c | | | L | 00 | | | L | | | | gomery | County | 0000 | - | | | | 00.0 | | 000 | | 3 | | | Supply Color Col | Agriculture | | | 00. | | | | | | | 0.00 | | 0.00 | 0 0 | | | 0 0 | 0.00 | | 0.00 | | 0.00 | | | Color Colo | Commercial | | | 90.00 | | | | | 0.0 | | 0.00 | | 0.00 | 0 0 | | | 0 0 | 000 | t c | 00.00 | | 0000 | 1 0 | | Color Colo | Irrigation | | | 00 | | | | | 0.0 | | 00.0 | | 000 |) (| | | | 0.00 | ı c | 0.00 | | 0.00 | | | Color Colo | Mining | | | 00 | | | | | 0.0 | | 00.00 | | 00.00 | 0 | | | 0 | 00.00 | 0 | 00.00 | | 00.00 | | | Supply Color Col | Power | | | .00 | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 0.00 | 0 | 00.0 | 0 | | Color Colo | Public Supply | | | .00 | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | | Lure 0.00 <th< td=""><td>TOTAL</td><td></td><td></td><td>00.</td><td></td><td></td><td>Ĭ.</td><td></td><td>Ī</td><td>Ĭ</td><td>0.00</td><td>Ĭ</td><td>0.00</td><td>0</td><td></td><td>Ĕ</td><td>0</td><td>0.16</td><td>Ф</td><td>00.00</td><td></td><td>0.16</td><td>9</td></th<> | TOTAL | | | 00. | | | Ĭ. | | Ī | Ĭ | 0.00 | Ĭ | 0.00 | 0 | | Ĕ | 0 | 0.16 | Ф | 00.00 | | 0.16 | 9 | | Nevada Counts Lure O.00 O.0 | | | | = | | | | | | | | | | \exists | | | | | | | | | | | Turie 0.00 0 0.0 | | - | | | | | | | | Ne | vada Cou | inty | | | 1 | | | | | | | | | | recial 0.00 0 0. | Agriculture | | | 00. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 0.00 | | 00.00 | 0 | | ial 0.00 0 0 0.00 0
0.00 0 0.0 | Commercial | | | 00. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 0.00 | | 00.00 | 0 | | One <td>Industrial</td> <td></td> <td></td> <td>00.</td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td>ij</td> <td>0.00</td> <td></td> <td>0.00</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>00.00</td> <td>0</td> <td>0.00</td> <td></td> <td>00.00</td> <td>0</td> | Industrial | | | 00. | | | | | 0.0 | ij | 0.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 0.00 | | 00.00 | 0 | | 0.000 0 0.000 | Irrigation | | | 00. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 00.00 | 0 | | Supply 0.00 0 0. | Mining | | | 00. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | | 00.00 | 0 | | Supply 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.05 2 0.00 0 0.05 2 0.00 0 0.05 0 0.00 0 0. | Power | | | 00. | | | | | 0.0 | | 0.00 | | 0.00 | 0 | | | 0 | 00.00 | 0 | 0.00 | | 00.00 | 0 | | 0.00 0 0.00 0 0.00 0 0.00 0 0.05 2 0.00 0 0.05 2 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 | Public Supply | | | 00. | | | | | | | 0.00 | | 0.05 | 7 | | | 0 | 0.00 | 0 | 0.00 | | 0.10 | 4 | | | TOTAL | | | 00. | | | Ĭ, | | | | 0.00 | | 0.05 | N | | | 0 | 0.00 | 0 | 0.00 | | 0.10 | 4 | | Use Type Totals | Mgal/d #of Wells | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.18 | 7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.94 | 0.94 | - | 0.00 | 00.0 | 0.00 | 0.00 | 0.00 | 0.00 | 00'0 | | 0.00 | 0.00 | 0.00 | 236.53 | 0.00 | 3.18 | 239.91 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |--|------------------|---------------|------------|------------|-----------|--------|-------|---------------|-------|--------------|-------------|------------|------------|------------|--------|-------|---------------|-------|--------------|--------------|------------|------------|-----------|--------|---------------|-------|-----------------|-------------|------------|------------|------------|--------|---------------|--------|-------------|-------------|------------|------------|------------|--------|------------------------|---------------| | | | 0 | 0 | 0 | 0 | 0 | 0 | H | H | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | | 0 0 | 0 | | | 0 | | 2 | 0 0 | | 0 23 | | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | Aquifers | Wells | All Other Aquifers | Mgal/d | 0.00 | 0.00 | 00.00 | 0.00 | 00'0 | 0.00 | 0.16 | 0.16 | | 0.00 | 0.00 | 0,00 | 00.00 | 0.00 | 0.00 | 0.00 | 00.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00'0 | | 0.00 | 00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 3 | m | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| 1 | 0 | 0 | 0 | 0 1 |) 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 0 | 2 | | Paleozoic
Undifferentiated | Mgal/d | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | 00.00 | 0.02 | 0.02 | 1 | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | 00.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | 00.00 | | 00.00 | 00.00 | 0.00 | 00.00 | 0.00 | 00.00 | 0.00 | | 00.00 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | | 7 1.13 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 1 |) c | 0 0 | 0 | | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | Trinity Group | Mgal/d W | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | ø | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 1 |) c | 0 0 | 0 | | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 0 |) | | Tokio
Formation | Mgal/d W | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.0 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 00.0 | 00.00 | 0.00 | 00.0 | 0.00 | 00.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Sand | w | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Ħ | - | | 0 | 0 | 0 | 0 1 | 5 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 0 | 5 | | Nacatoch Sand | Mgal/d | 0.00 | 0.00 | 00.00 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | | 00.00 | 00.00 | 0.00 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 30.0 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | <u>8</u> | o ty | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 |) o | 0 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | Clayton
Formation | Mgal/d | Newton County | 0.00 | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | 00'0 | danso Campan | 0.00 | 00.00 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | Perry County | 0.00 | 0.00 | 0.00 | 0.00 | 00.0 | 0.00 | 00.00 | Phillips County | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | Pike County | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | | dno | Wells | New | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ì | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Pei | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Phil | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | - 12 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | Wilcox Group | Mgal/d | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 00.00 | 0.00 | 00.00 | 00.00 | 0.00 | 00.00 | 0.00 | | 00.00 | 0.00 | 00.00 | 0.00 | 00.00 | 0.00 | 00'0 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 00.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | 00.00 | | e River | Ø | | | Y | | | 0 | | | | | | | ľ | Ĭ, | 0 | | | | | | | | | 0 0 | | | | | | | 0 0 | | 0 | | | | | | | 0 0 | | | CaneR | Mgal/d | 0.00 | 0.00 | 0.00 | 0.00 | 00:00 | 00.00 | 0.00 | 0.00 | | 00:00 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.05 | 0.05 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | is Sand | # of Wells | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 17 | | 0 | 0 | 0 | 0 |) 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 5 | 15 | 19 | | 0 | 0 | 0 | 0 | 0 | 0 | 5 | | Sparta-Memphis Sand | Mgal/d # | 0.00 | 0.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | | 00'00 | 0.00 | 0.00 | 00'0 | 0.00 | 00:00 | 0.88 | 0.88 | 3 | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | 00.00 | | 00.00 | 00'00 | 00.00 | 00.00 | 0.00 | 3.18 | 3.38 | | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | 00.00 | | field
ation | | 0 | | 0 | | | | | 0 | | L | 0 | n | | 0 0 | 0 0 | Ä | 0 | | 0 C | | | | | | | | 0 | | | | 0 0 | | Ņ, | | 0 | | 0 0 | | | 0 0 | | | Cockfield
Formation | Mgal/d | 00'0 | | | | | 00.00 | | 0.00 | | 0.00 | | ĺ | | | | j | 0.00 | | 00'0 | 7 | | | 00.00 | ľ | 00.00 | | L | 00'0 | | | 0.00 | | 00.00 | | 00.00 | | | | | | 00.00 | | luvial and
posits | # of Wells | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | H S | 2 | 3 | | 0 | 0 | 0 | 2,083 | 0 0 | 0 | 2,083 | | 0 | 0 | 0 | 0 | 0 | 0 | 7 | | Quaternary, Alluvial and
Terrace Deposits | Mgal/d | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00:00 | 00.00 | 0.00 | | 0.00 | 00'0 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | 00.00 | | 0.00 | 00:00 | 00.00 | 236.53 | 0.00 | 00:00 | 236.53 | | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | C0.0 | | | UseType | Agriculture | Commercial | Industrial | rrigation | Mining | Power | Public Supply | TOTAL | | Agriculture | Commercial | Industrial | Irrigation | Mining | Power | Public Supply | TOTAL | | Agricul ture | Commercial | Industrial | rrigation | Mining | Public Supply | TOTAL | | Agriculture | Commercial | Industrial | Irrigation | Mining | Public Supply | TOTAL | | Agriculture | Commercial | Industrial | Irrigation | Mining | Power
Public Cumply | Fublic Supply | | | Terrace Deposits | | Formation | Sparta-Memphis Sand | his Sand | Cane | River | Wilcox Group | group | Formation | | Nacatoch 5 | Sand | Formation | | Trinity Group | | Undifferentiated | A | Other Aquifers | | Use Type Totals | |----------------------------|-------------------|---------------|----------------------|---------------------|------------|--------|---------------|--------------|---------------|-----------------|---------------|------------|------------|-----------|---------------|---------------|------------|------------------|-----|-----------------|-----------|-----------------| | Use Type | Mgal/d # of Wells | els | # of
Mgal/d Wells | Mgal/d | # of Wells | Mgal/c | # of
Wells | Mgal/d | 17.0 | Mgal/d | - 9 | Mgal/d V | 2 | Mgal/d V | - 120 | W p/lsal/ | | # of Wells | Z | # of
d Wells | 2 | # of Wells | | | | | | | | | | | Poin | sett County | tγ | | | | | À | | | | | | | | Agricul ture | 00.00 | 0 | | | 0 | Д | | 0.00 | | 00.00 | Ö. | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | | | 0 | | Commercial | 0.54 | ₹1 | | | 0 | | | 00.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | | | Y | 4 | | Industrial | | н | | | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | | | | | rrigation | II, | 2,972 | | | 14 | | | 2.15 | | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 86 | 2 3,01 | | Mining | 0.00 | 0 (| | | 1 | | | 0.00 | | 0.00 | 0 (| 00.00 | 0 (| 0.00 | 0 (| 00.00 | 0 (| 0.00 | | | 0 0.07 | 7 | | Power | 00.0 | 5 1 | | | 0 | | | 00.00 | 0 | 00.0 | 5 . | 00.0 | 5 | 00.0 | 5 | B) ; | 5 | 0.00 | | | | 5 1 | | Public Supply | | 30 | | | 4 | 0 0 | | 2.05 | ָרכ יָּר | 00:00 | 0 • | 00.00 | 0 1 | 0.00 | 0 | 00.00 | 0 0 | 0.00 | | | | | | IOIAL | 835.20 2, | 2,982 | 1.8/ | 4.60 | ST. | 0.00 | | 4.21 | 14 | 0.00 | 5 | 00.0 | 5 | 0.00 | 0 | 0.00 | 5 | 0.00 | | 3.80 | 12 849.67 | 3,036 | | | | - | | | | | | | 1 | A Charles | - | | | | | | | | | 4 | | | | 100 | | (| | | | Ш | | 000 | roinset | t i west | County | 000 | | 0 | (| 000 | 4 | 000 | ı | | | | | Agricul ture | 00.00 | ٥. | | | 2 | | | 0.00 | 0 | 0.00 | > | 0.00 | 3 | 00.0 | 5 | 00.0 | 0 | 0.00 | | | | 0 | | Commercial | 0.54 | el . | | | ٠ | | | 00.00 | | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | | | | 4 | | Industrial | | ŧΗ | 0.00 | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | | 00.00 | | | nrigation | | 1,823 | | | O) | | | 2.15 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | Š | 1,846 | | Mining | 0.00 | 0 | | | *** | | | 00.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | | 7 | | Power | 00.00 | 0 | | 00'0 | 0 | | | 00.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | | 00:00 | | 0 | | Public Supply | 0.53 | 9 | | | 4 | | | 0.34 | | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | | 90 | | TOTAL | | 1,831 | 1.87 | 3.50 | 41 | 00.00 | | 2.49 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | 15 | 7 1,860 | | | | | | | | | | | 2000 | 1 | | | | | | | | | | | | | | A complete of the complete | | c | | | | | | C | Poinset | t (East) County | ounty | 000 | c | 000 | c | 000 | c | 000 | | | | | | Agriculture | | > (| | | ، د | 00.00 | | 00.0 | > (| 00.00 | > (| 00.0 | 5 (| 00.0 | > (| 90.0 | 5 (| 0.00 | | | | D (| | Commercial | 0.00 | 0 (| | | ، ن | | | 0.00 | o « | 00.00 | 0 (| 0.00 | 0 (| 0.00 | 0 (| 0.00 | 0 0 | 0.00 | | | | 0 (| | ndustrial | | 0 , | 0.00 | 0.00 | 0 1 | 0.00 | 0 0 | 0.00 | 0 (| 0.00 | 0 (| 0.00 | 0 0 | 0.00 | 0 (| 0.00 | 0 (| 0.00 | | | 0.00 | | | Irrigation | | 149 | | | 44 | | | 0.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 2 | 6 1,165 | | Mining | 0,00 | 0 | | | ٠ | | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | 0 | | Power | 00.00 | 0 | | | 9 | | | 0.00 | | 0.00 | 0 ! | 00.0 | 0 | 0.00 | a ! | 0.00 | 0 | 0.00 | | | 00.0 | 0 | | Public Supply | | 7 | | | 0 | | | 1.72 | | 0.00 | o | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | | TOTAL | 271.69 1, | 1,151 | 0.00 | 1.10 | un. | | | 1.72 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | 3.80 | 2 278.30 | 0 1,176 | | | | | | | | | | | 0 | - 1 ≙ | | | | | | | | | | | | l | | Apriculture | 00.0 | C | 0 00 0 | 00.0 | | L | | 00.0 | | O O | C | 00.0 | C | no n | C | 00.0 | - | 00.0 | 0 | luu u | 000 | _ | | Commercial | 0.00 | 2 | | | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | 0 | | Industrial | 0,00 | 0 | | | 0 | | | 0.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 1 | 00.00 | 0 | | Irrigation | 0.00 | 0 | Í | | 0 | | | 00.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 |
0 | 00.00 | 0 | 00.00 | | | | 0 | | Mining | 00.00 | 2 | 0.00 | 00.00 | 0 | | Ĭ | 00.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.01 | | 0.00 | 0 0.01 | - | | Power | 0.00 | 0 | 0.00 | 00.00 | 0 | | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 0 | 0.00 | 0.00 | 0 | | Public Supply | 0.00 | 0 | 0.00 | | 0 | | Ĭ | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0.00 | 0 | | TOTAL | 0.00 | 4 | 0.00 | 00.00 | 0 | M. | 75 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.0 | 0 | 0.00 | 0 | 0.01 | 11 | 0.00 | 0 0.01 | T T | | | | - | | | | | | | - | | | | | | | | | _ | | | | | | Arthur | 00.0 | 0 | 000 | 00.0 | | L | | 00.0 | | Pope County | | 00.0 | C | 00.0 | c | 00.0 | C | 00.0 | | 00.00 | 000 | | | a in include | 0.00 | > , | | | 0 0 | | | 00.00 | | 00.00 | 0 0 | 00.0 | 5 0 | 00.0 | 0 0 | 00.00 | 0 0 | 0.00 | | | | 0 1 | | Commercial | 0.00 | 1 C | 0.00 | 00.00 | 0 0 | | | 0.00 | 5 0 | 00.00 | 0 0 | 00.0 | 0 0 | 00.0 | 0 0 | 0.00 | 0 0 | 0.00 | | 0.00 | 70.0 | | | nunsuna | 00.00 | 0 0 | | | ٥ | | | 00.0 | | 00.0 | 0 | 00.0 | 0 0 | 00.0 | 0 | 00.00 | 0 0 | 00.0 | | | | 0 0 | | Mining | 00.0 |) c | 00.0 | 00.0 | 0 0 | 0000 |) C | 300 | 0 0 | 00.0 | 0 0 | 0000 | o c | 00.0 | 0 0 | 00.0 | o c | 00.00 |) C | | 00.0 | 0 0 | | S. IIIIII | 00.00 | 0 0 | | |) (| | | 0000 | | 0000 |) (| 0000 | 0 0 | 00.0 | 0 0 | 0000 | 0 0 | 00.0 | | | | 0 0 | | Power | 0.00 | 0 0 | | | | 00.00 | | 0.00 | | 00.00 | 5 0 | 00.0 | 3 0 | 00.00 | 0 0 | 0.00 | D | 0.00 | | | | | | Fublic Supply | 0.00 | 5 , | | | 0 | | | 00.00 | 0 | 0.00 | 5 (| 00.0 | 5 (| 00.0 | 0 1 | 00.0 | 0 | 0.00 | | | | 5 I | | TOTAL | 0.07 | 4 | 0.00 | 0.00 | 0 | | | 0.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | 0.00 | 0 0.07 | 0 | Terrace Deposits | eposits | IIODBIII IO | + | sparta-Iviempnis sand | - | משום ואוספו | | 1 | 1 | | | | | | | | Displace of the second | The state of s | | | - | 2001 - 461 - 200 | |---------------|------------------|------------|----------------------|----------------|-----------------------|--------|-------------|------|----------------------|--|-----------------|---------|------|--------|---------------|-------|----------------------|------------------------|--|-----------------|---------------|--------|------------------| | UseType | Mgal/d | # of Wells | # of
Mgal/d Wells | t
Is Mgal/d | # of Wells Mgal/d | ls Mga | D 74.2 | | # of
Mgal/d Wells | b/legM s | # of
d Wells | Mgal/d | # of | Mgal/d | # of
Wells | | # of
Mgal/d Wells | Mgal/d | # of
Wells | # of # of Mells | # of
Wells | Mgal/d | # of Wells | | | | | | | | | | | 1 | Prairie County | unty | | | | | | | | | | | | | | Agriculture | 00.00 | 0 | 0.00 | | 0.00 | 0 | 0.00 | | 00.00 | 00.00 | | 0.00 | | 0.00 | | | | 00.00 | 0 | 0.00 | 0 | 00.0 | 3 | | Commercial | 0.00 | 0 | 00.00 | | | | | 0 0. | | 0.00 | | 0.00 | 0 0 | | | | 0 0 | 00.00 | 0 | 0.00 | 0 | 0000 | | | Industrial | 00.00 | | 00.00 | | | | | | | | | | | | | | | 0.00 | 0 | 0.00 | 0 | 00'0 | | | rrigation | 202.59 | 1,776 | 00.00 | | 11.68 55 | 55 0 | 0.00 | A | 2.78 14 | 14 0.00 | | 00'0 0 | | 0.00 | | | | 00.00 | 0 | 10.88 | 58 | 227.94 | 1,903 | | Mining | 00.00 | 0 | | | | | | 0 | | | | 00'0 0 | | 0.00 | | | | 00.00 | 0 | 00'00 | 0 | 0.00 | | | Power | 00.00 | 0 | | 0 | 0.00 | 0 | | 0 | 0.00 | 00.00 | | 00.00 | | 0.00 | 0 | | | 00.00 | 0 | 00'0 | 0 | 0.00 | | | Public Supply | 208.51 | 10 | 00.00 | 0 | 0.16 2 | 2 0 | 0.00 | 0 0. | 0.00 | 00.00 | Ĺ | 00.00 | | 0.00 | 0 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 208.67 | 12 | | TOTAL | 411.10 | 1,786 | 00.00 | 0 11 | 11.84 57 | 22 0 | 0.00 | 0 2. | 2.78 14 | 0.00 | | 0.00 | | 0.00 | 0 0 | 00.00 | 0 | 00.00 | 0 | 10.88 | 28 | 436.61 | 1,915 | | | | | | | | | | | | Pulaski County | nunta | | | | | | | | | | | | | | Agriculture | 0.03 | , | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 00.0 | 100 | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.03 | | | Commercial | 0.06 | | 0.00 | | | | | | | | | | | | | | | 000 | 2 6 | 0.00 | 0 0 | 0.06 | | | ndustrial | 0.00 | | | | | | Ľ | | | 00.00 | | | 0 | | | | | 0.00 | 0 | 0.00 | 0 | 0.00 | | | migation | 20.43 | 38 | | | | | ľ | | | | | | | | i, | | | 0.00 | 0 | 1.00 | 7 | 27.56 | 238 | | Mining | 00.0 | | 0.00 | | | | | | | | | | | | | | | 0.00 | 0 | 0.00 | . 0 | 0.00 | | | Power | 0.00 | | 0.00 | | | | | | | | | | | | | | | 00'0 | 0 | 0.00 | 0 | 0.05 | | | Public Supply | 3.17 | F | 0.00 | | | | | | | | | | | | | | | 0.02 | S | 0.00 | 0 | 3.40 | 20 | | TOTAL | 23.68 | 2 | 0.13 | | | | | | | | | Ī | | | | | | 0.02 | 7 | 1.00 | 7 | 25.09 | 265 | | | | | | | | | _ | | | | | | | | | | | Ĭ | | | | | | | di. | 0 | | 000 | | | | | | | lop | 241 | | | | | | | 000 | (| 00.0 | < | 000 | | | Agriculture | 0.00 | | 0.00 | | | | | | | | | | | | | | | 0.00 | 0 | 0.00 | 0 | 0.00 | | | Commercial | 0.00 | | 00.00 | | | | | | | 00.00 | | | 0 | | | | | 0.00 | 0 | 0.00 | 0 | 0.00 | | | ndustrial | 0.00 | | | | | | | | | | | | | | | | | 0.00 | 0 | 0.00 | 0 | 0.00 | 1 | | Irrigation | 106.10 | 72 | | | | | | | | | | | | | | | | 0.16 | - | 0.34 | - | 106.59 | 722 | | Mining | 0.00 | | 0.00 | | | | | | | | | | | | | | | 00.00 | 0 | 0.00 | 0 | 00.00 | | | Power | 0.00 | | | | | | | | | | | | 0 0 | | | | 0 | 00.00 | 0 | 0.00 | 0 | 0000 | | | Public Supply | 0.03 | | | | | | | | | Ι, | | | | - | | | | 0.26 | 5 | 00.00 | 0 | 0.29 | | | TOTAL | 106.13 | 721 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 0.00 | | 00'0 | Ĭ | 0.00 | 0 | 0.00 | 0 | 0.42 | 9 | 0.34 | 1 | 106.88 | 728 | | | | | | | | | | | 3 | Constitution of the state th | 1 | | | | | | | | | | | | | | Apricultura | ט טט | C | 00.0 | 0 | 0.00 | 0 | 000 | 0 | 000 | 0000 | | no n | Ü | 000 | 0 | 00.0 | 0 | DO D | C | 00.0 | C | 000 | | | Commercial | 00'0 | | 0,00 | | | | | | | | | | | | | | | 0.00 | 0 | 0,00 | 0 | 00'0 |
| | Industrial | 0.00 | | 0.00 | | | | | 0.0 | | 00.00 | | | 0 0 | | 0 | | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 17 | | Irrigation | 291.25 | 2,05 | 0.57 | | | | | | | | | | | | | | | 00.00 | 0 | 0.94 | 60 | 292.76 | 2,099 | | Mining | 00.00 | l. | 00.00 | | 0,00 | 0 0 | 0.00 | | 0.00 | 00.00 | Ĺ | 00.00 | | 00'0 | 0 0 | 00.00 | 1 | 00.00 | 0 | 0.00 | 0 | 00.00 | | | Power | 00.00 | 4 | 00.00 | | 00.00 | 0 | 0.00 | 0 0 | 0.00 | 00.00 | | 00.00 | 0 | 00'0 | | 00.00 | | 00.00 | 0 | 0.00 | 0 | 0.00 | | | Public Supply | 4.04 | 15 | 0.00 | 0 | 0.00 | 0 0 | 00.00 | | 0.41 | 4 0.00 | | 00.00 | | 0.00 | Ñ | 0.00 | | 00.00 | 0 | 0.00 | 0 | 4.45 | 1 | | TOTAL | 295.29 | 2,109 | 0.57 | 9 | 0.00 | 0 | 00.00 | 0. | 0.41 | 4 0.00 | | 0.00 | 0 | 00'0 | 0 | 00.00 | | 0.00 | 0 | 0.94 | m | 297.21 | 2,122 | 0.00 | | | | | | | | 5 | cis | st) Count | | | | | Ш | | 7 | | | | | | | Agriculture | 0.00 | 0 | 0.00 | 0 | | 0 0 | | | | | | | 0 | | 0 | | 0 | 0.00 | 0 0 | 0.00 | 0 (| 0.00 | | | Commercial | 0.00 | | 0.00 | | | | | 0 0 | | 0.00 | | 0.00 | | | | | | 0.00 | D | 0.00 | 0 | 0.00 | | | Industrial | 00.00 | | | | | | | | | | | | | | | | | 0.00 | 0 1 | 0.00 | 0 | 0.00 | 0 1 | | Irrigation | 192.90 | 1,31 | | | | | | | | | | | | | | | | 00.00 | 0 | 0.94 | m | 194.41 | 1,365 | | Mining | 00.00 | 0 | 0.00 | | | | | | | | | 0.00 | | | | | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | | Power | 00.00 | | 0.00 | 0 | | | | | | | | | | | 0 | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 4 | | Public Supply | 4.04 | 15 | 0.00 | | 0.00 | | 0.00 | 0 0. | 00.00 | 0.00 | | 00'00 0 | | 00.00 | | 00'0 | | 0.00 | 0 | 00'00 | 0 | 4.04 | 15 | No. | | Quaternary, Alluvial:
Terrace Deposits | Quaternary, Alluvial and
Terrace Deposits | Cockfield
Formation | | Sparta-Memphis Sand | is Sand | CaneRi | _ | Wilcox Group | | Clayton
Formation | | Nacatoch Sand | Tokio
Formati | | Trinity Group | _ | Paleozoic
Undifferentiated | | All Other Aquifers | lifers | Use Type Totals | Total | |--|---------------------------|---|--|------------------------|---------------|---------------------|---------|--------|-----|--------------|------------|----------------------|----|---------------|------------------|------|---------------|-----|-------------------------------|-----|--------------------|--------|-----------------|----------| | Column C | UseType | Mgal/d | # of Wells | Mgal/d V | # or
Wells | _ | | P/ | | Mgal/d W | | | | # of
Wells | Mgal/d | # of | /gal/d | _ | gal/d W | | v b/les | | | of Wells | | 1 | | | | | | | | | | | Francis (E | | | | | | | | | | | | | | | Column C | Agriculture | 0.0 | | 0.00 | 0 0 | 00.00 | 00 | 0.00 | 00 | 0.00 | | | | | | | 90.0 | 0 0 | 0.00 | 00 | 0.00 | 00 | 0.00 | | | 100 | Industrial | 0.00 | | 0.00 |) C | 00.0 | 2 0 | 0.00 | a c | 0.00 | | | | | | | 000 | o c | 800 | 0 0 | 0.00 | a c | 0.00 | | | Column C | Irrigation | 98.35 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | | | | | | | 0.00 | 0 | 0.00 | 0 | 000 | 0 | 98,35 | | | Columbia | Mining | 0,00 | | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | | | | | 0.00 | 0 | 0.00 | 0 | 0,00 | 0 | 0.00 | | | 1 | Power | 0,00 | | 0.00 | 0 | 00'00 | 0 | 0.00 | 0 | 0.00 | | | | | | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | | | | Public Supply | 0.00 | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.41 | | | | | | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.41 | | | Columb C | TOTAL | 98.35 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.41 | | | | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 98.76 | 738 | | Section Color Co | | | | | | | 1 | | | | Saline | County | | | | | | | | | - 1 | | | | | 10 10 10 10 10 10 10 10 | Agriculture | 0.00 | | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 1 | | | | 0 | 00.00 | 0 | 00.00 | 0 | 00:00 | 0 | 00.00 | | | 1 | Commercial | 0.00 | | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | | | | | | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | Color Colo | Industrial | 0.00 | | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | | | | | | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | Charles Char | Irrigation | 0.00 | | 0.00 | 0 | 00'0 | 0 | 00.00 | 0 | 0.00 | | Ù | | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | Colorado | Mining | 0,00 | | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | | | | | Н | Ĭ | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | Columbia | Power | 0.00 | | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | | | | | 9, | | 00.00 | 0 | 0.00 | 0 | 00'00 | 0 | 0.00 | | | Fig. 10 Fig. 11 Fig. 12 | Public Supply | 0.37 | | 0.00 | 0 | 0.26 | 2 | 00.00 | 0 | 0.83 | | | | | | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 1.43 | | | Second Color Col | TOTAL | 0.3 | | 0.00 | 0 | 0.26 | 7 | 0.00 | 0 | 0.83 | | | | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 1.43 | | | Third Thir | | | | | | | | | | | Scott | Aduno | | | | | | | - | | - | 1 | | | | Heating Coordinate Coordi | Agriculture | 0.00 | | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | | | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 1 | Commercial | 0.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | Ŋ | | Ť | | | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | The color of c | Industrial | 0.00 | | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | | | | | | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | | | Color Colo | Irrigation | 0.00 | | 00.00 | 0 | 00'00 | 0 | 00.00 | 0 | 0.00 | | | | | | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | Mining | 0.00 | | 0.00 | 0 | 0.00 | 0 0 | 0.00 | 0 | 0.00 | П | | | | | 0 8 | 0.00 | 0 0 | 0.00 | 0 | 0.00 | 0 0 | 0.00 | | | Color Colo | Power | 0.00 | | 00.00 | 0 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | | | | | | 2.0 | 0.00 | 0 0 | 0.00 | 0 0 | 00.00 | 0 0 | 0.00 | | | The color of c | TOTAL | 0 | | 8 | 0 | 000 | 0 0 | 2000 | 0 | 00.0 | | | | | |) c | 200 |) c | 00.0 | | 800 | o c | 000 | | | Same Control of Contro | 10.00 | 5 | | 20.0 | , | 200 | 2 | 200 | , | 200 | | | | | | , | 2000 |) | 20.0 | , | 20.0 |) | 2000 | | | Particle Color C | | × | | | | | | | | | Searcy | County | | | | | | | | | | | | | | Funcial Color Colo | Agricul ture | 0.00 | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | Supply Color Col | Commercial | 0.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | | | | | | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | Color Colo | Industrial | 0.0 | | 0.00 | 0 | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | | | | | | 0 0 | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | 0 0
| 0.00 | | | Control Cont | Mining | 0.00 | | 0.00 | 0 0 | 0.00 | 0 | 00.0 | 0 0 | 0.00 | III. | | Į. | | | 0 0 | 00.00 | 0 0 | 0.00 | 0 0 | 0.00 | 0 0 | 0000 | I | | Supply Color Col | Power | 0.00 | | 0.00 | 0 | 0,00 | 0 0 | 0.00 | 0 | 0.00 | | | L | | | 0 | 00.00 | | 00.00 | 0 | 0.00 | 0 0 | 0.00 | | | Color Colo | Public Supply | 0.00 | | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | | | | 0 | 0.00 | 0 | 0.26 | 4 | 0.00 | 0 | 0.26 | | | Lure 0.00 <th< td=""><td>TOTAL</td><td>0.00</td><td></td><td>00.00</td><td>0</td><td>00.00</td><td>0</td><td>00.00</td><td>0</td><td>0.00</td><td></td><td></td><td></td><td></td><td>ď.</td><td>0</td><td>00.00</td><td>0</td><td>0.26</td><td>4</td><td>00.00</td><td>0</td><td>0.26</td><td></td></th<> | TOTAL | 0.00 | | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | | | | | ď. | 0 | 00.00 | 0 | 0.26 | 4 | 00.00 | 0 | 0.26 | | | ture 0.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7</td><td></td><td>1</td><td>11</td><td></td><td></td><td></td><td></td><td></td></th<> | | | | | | | | | | | | | | | | 7 | | 1 | 11 | | | | | | | Parcial 0.000 0 0.000 | 4 | 200 | | 00 0 | c | 00.0 | c | 00.0 | C | 00.0 | Sebastia | | | L | L | C | 00.0 | C | 00.0 | ç | 00.0 | c | 000 | | | idal control of contro | Agriculture
Commonaiol | 000 | | 0000 | 0 0 | 0000 | 0 0 | 00.0 | 0 0 | 0000 | | | | | | 0 0 | 0000 | 0 0 | 0000 | 0 0 | 00.0 | 0 0 | 0000 | | | O | Industrial | 000 | | 00.0 | 0 0 | 800 | 0 0 | 00.0 | 0 0 | 00.00 | | | | | | 0 0 | 00.00 | 0 0 | 0000 | 0 0 | 0000 | 0 .0 | 00.0 | ١ | | O | Irrigation | 00.0 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 0 | 0.00 | ĮĽ | | | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0,0 | 0.00 | | | O 000 0 000 0 000 0 000 0 000 0 000 0 000 0 | Mining | 0.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | O 000 0 000 0 000 0 000 0 000 0 000 0 000 0 | Power | 0.00 | | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | | | E. | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 0 | 00.00 | | | 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 0:00 0 0:00 0 0:00 0 0:00 0 0:00 | Public Supply | 0.00 | | 00.00 | 0 | 00.00 | 0. | 00.00 | 0 | 0.00 | Ĭ. | | | | 7 | | 0.00 | 0 | 0.00 | 0 | 00:00 | 0 | 0.00 | | | | TOTAL | 0.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | | | Ď, | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | Use Type | Terrace Deposits Mgal/d # of Wells | Deposits
of Wells | Formation # | fon
of
Wells | Sparta-Memphis Sand
Mgal/d # of Well | ohis Sand
of Wells | Cane River
of
Mgal/d Wells | Wilcox Group
of
Mgal/d Wells | Formation # of Wells | <u> </u> | Nacatoch Sand
of
Mgal/d Wells | Formation # of | Trinity (| a | Valeozoic
Undifferentiated
of
Mgal/d Wells | | All Other Aquifers # of Mgal/d Wells | Use Type Totals
Mgal/d # of We | |---------------|-------------------------------------|------------------------|-------------|----------------------|---|-------------------------|--------------------------------------|--|----------------------|----------|---|----------------|-----------|-----|---|--------------|--------------------------------------|-----------------------------------| | | | | - | | 1 | | | | evier | Ш | U | | Ш | 1 | | | | | | Agriculture | 0.00 | | 0.00 | 0 | 0.00 | 0 | | 0.00 | 00.00 | 00.00 | 0 0 | 0.00 | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | 0.00 | | adustrial | 00.0 | | 00.0 | 0 0 | 0000 | 0 0 | | | | | | | | 0 0 | 0000 | | | 0000 | | mination | 00.0 | | 00.0 | 0 0 | 00.0 | 0 0 | | | | | | | | 0 0 | 00.00 | | | 00.0 | | Mining | 000 | | 00.0 | 0 | 000 |) C | | | | | | | |) C | 00.0 | | | 000 | | | 000 | | 00.0 | C | 000 | · C | П | | | | | | | C | 00.0 | | | 000 | | Public Supply | 0.01 | | 0.00 | 0 | 0.00 | 0 | | | | | | | | 4 | 0.00 | | | 0.17 | | | 0.01 | | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 0.00 | | 0.00 | 0.16 | 4 | 00.00 | | | 0.17 | + | | | | Jarp | | | | | - | | | | | | Agriculture | 00.00 | | 00.00 | 0 | 00.00 | 0 | | | | 00.00 | | | | 0 | 0.00 | | | 0.00 | | Commercial | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 00.00 | 00.00 | 0 | 0.00 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | | ndustrial | 0.36 | | 0.00 | 0 | 00.00 | 0 | | | ji | 00.00 | | | | 0 | 0.00 | j | | 0.36 | | rrigation | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | ľ | 0.00 | 0.00 | 00.00 | 0 0 | 00.00 | 00.00 | 0 | 0.00 | Ī | 0.00 | 0.00 | | Mining | 00.00 | 0 | 00.00 | 0 | 00.00 | 0 | | 0.00 | 00.00 | 00.00 | | 00.00 | 00.00 | 0 | 0.00 | | 0.00 | 0.00 | | | 00.00 | | 00.00 | 0 | 0.00 | 0 | | 0.00 | 0.00 | 00.00 | 0 | 00'0 | 00.00 | 0 | 0.00 | | 0.00 | 0.00 | | Public Supply | 0.00 | , - 4 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 00.00 | | | | 0 | | 10 0. | 0.00 | 0.82 | | | 0.36 | | 0.00 | 0 | 0.00 | 0 | | 0.00 | 00.00 | 00.00 | | 0.00 | 000 | 0 | | | | 1.18 | | | | | | | | | | | Second County | _ | | | | 7 | - | , | | | | Agricultura | 00.0 | | 00.0 | - | 000 | 0 | | 0 1000 | O O O | 00.0 | 0 | 000 | 000 | C | 000 | | 00.0 | 000 | | Commercial | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | 0.00 | | 0.00 | | 0 | 0.01 | 0 | 0.00 | 0.01 | | Industrial | 0.00 | | 00'0 | 0 | 0.00 | 0 | | | | | | | | 0 | 0.00 | Ī | | 0.00 | | rrigation | 0.14 | Щ | 0000 | 0 | 0.00 | 0 | | 0.00 | | | 0 | | | 0 | 0.00 | | | 0.14 | | | 0.00 | | 00.00 | 0 | 00'0 | 0 | | | | | | | | 0 | 0.00 | | | 00.00 | | | 0.00 | | 00.00 | 0 | 00.00 | 0 | | Ť | 00.00 | | | 00.0 | 00.00 | 0 | 0.00 | Ī | | 0.00 | | Public Supply | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0.00 | | 0.00 | 0 | 00.00 | | 0 | 0.00 | 0 | | 00.0 | | | 0.14 | 1 | 0.00 | 0 | 0.00 | 0 | | 0.00 | 00.00 | 0000 | | 0.00 | 0.00 | 0 | 0.01 | | 0.00 | 0.15 | | | | | | | | | | 3 | Union County | - | | | | | | - | | | | Agriculture | 0.00 | | 0.00 | 0 | 00.00 | 0 | 0 000 | 0.00 | 0.00 | 00.00 | 0 | 00'0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 00.00 | | Commercial | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0 000 | | | | | 0.00 | | 0 | 0.00 | | | 0.00 | | ndustrial | 0.00 | | 0.18 | ч | 5.30 | 20 | | | | | 0 | | - | 0 | 0.00 | | | 5.48 | | rrigation | 0.00 | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0.00 | 0.00 | 00.00 | | 00.00 | | 0 | 0.00 | 0 | 0.00 | 0000 | | | 00.00 | | 00.00 | 0 | 0.00 | 0 | Ľ | | | 00.00 | | | | 0 | 0.00 | Ĺ | | 0.00 | | | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | | 0.00 | | 00.00 | 0 | | | 0 | 0.00 | 0 | 0.00 | 00'0 | | Public Supply | 0.05 | 1 | 0.00 | Ţ | 5.01 | 35 | Ì | | 0.00 | | | 00.00 | î | 0 | 0.00 | | | 5.07 | | | 0.05 | 1 | 0.18 | N | 10.31 | 55 | 0.00 | 0.00 | 00.00 | 0.00 | 0 | 0.00 | 00.00 | 0 | 0.00 | | 0.01 | 10.55 | | | | | | | | | | 13 | | | | | | | | | | | | Apriculture | 00 0 | | 00.0 | 6 | ou o | _ | | u luuu | n n nn | 000 | | 000 | 000 | - | 00.0 | | 0000 | 000 | | Commercial | 00.0 | 0 | 0.00 | 0 0 | 0000 | 0 0 | | | | | 0 | | 00.00 | o | 0.00 | | 0.00 |
0.00 | | ndustrial | 0.00 | | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | | | 0 | 0,00 | 0.0 | | 0.00 | | rrigation | 0.00 | | 0.00 | 0 | 00.00 | 0 | | 0.00 | | | | | | 0 | 0.00 | | | 0000 | | | 000 | | 000 | 0 | 00.0 | | | | | | | | | | 000 | | | 000 | | | 0000 | | 00.0 | | 0000 | 0 0 | | | | 0 0 | | | | 0 | 0000 | | | 0000 | | Public Supply | 00.0 | 0 0 | 0.00 | 0 0 | 0.00 |) C | | | | | 0 0 | | 00.0 | 0 | 00.00 | | 0 0 | 0000 | | d individual | 000 | | 00 0 | 0 | 000 | | | 0 00 0 | 000 | 0000 | | | 000 | c | 000 | | 000 | 000 | | | 3 | | 3 | > | 30.5 |) | | | | | | | | • | 20:0 | | | 00.0 | | | Quaternary, Alluvial and
Terrace Deposits | Cockfield | | Sparta-Memohis Sand | is Sand | Cane Ri | | Wilcox Gro | anc | Clayton | Nacato | Nacatoch Sand | | | Trinity Gro | _ | Undifferentiated | | Aguifers | UseTvpeTotals | e Totals | |---------------|--|-----------|-----|---|------------------|---------|--------------------|---------------------|------------|----------------------|--------|---------------|-------|---------------|----------------------|-----|----------------------|--------|----------------------|---------------|------------| | UseType | Mgal/d # of Wells | Mgal/d | - S | Mgal/d # | # of Wells Mgal/ | ਰ | # of
/d Wells I | #of
Mgal/d Wells | | # of
Mgal/d Wells | | # of
Wells | 2 | # of
Wells | # of
Mgal/d Wells | 100 | # of
Mgal/d Wells | | # of
Mgal/d Wells | Mgal/d | # of Wells | | | | 5 | 2 | | | | 1 | 1 | Washington | gton County | 2 | | | | J | 3 | | | | | | | Agriculture | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | | | 0.00 | 0 | | Commercial | 0.00 | | 0 | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | | | | | 0.00 | 0 | 00.00 | | | 0000 | 9 | | ndustrial | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | | | 0.00 | | | rrigation | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 1 | | | | 00.00 | 0 | 0.00 | | | 0.00 | | | Mining | | | 0 0 | 0.00 | 0 | 00:00 | 0 0 | 0.00 | 0 0 | 0.00 | | | | | 0.00 | 0 0 | 0.00 | | | 0.00 | | | Power | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 00.00 | 5 | 0.00 | | | 0.00 | | | Public Supply | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | | | 0.00 | | | TOTAL | 0.00 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 00.00 | 2 0.00 | T | 0.00 | | | | | | 1 | | | | | | | | | | | | - | - | | | | | | | | | | - | | | | | 3 | Whi | White County | | | | | | - | - | | | | | | Agriculture | | | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | 0 | | | 0.00 | 0 | 0.00 | 0 0.00 | | 00.00 | | | Commercial | 0.00 | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | | 0 | 00.0 | | | ndustrial | 0.00 | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | | | | 0.00 | 0 | 0.00 | Ĭ | Ц | 0.00 | 0 | | rrigation | 32.40 418 | | 0 | 0.00 | 0 | 0.00 | 0 | 0.75 | 2 | 0.00 | 00.00 | 0 0 | 00.00 | Ĭ | 0.00 | 0 | 0.00 | 0.80 | 15 | 33.95 | 435 | | Mining | 0.00 | | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 00.00 | 0 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | | | Power | | 00.00 | 0 | 00.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | | 0 | 0.00 | 0 | | Public Supply | | | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 00.00 | 0 | Ē | | 0.00 | 0 | 0.00 | | 0 | 0.97 | 50 | | TOTAL | 33.38 426 | | 0 | 00.00 | 0 | 0.00 | 0 | 0.75 | 7 | 0.00 | 00.00 | | 00.00 | 0 | 0.00 | 0 | 0.00 | 0.80 | 15 | 34.93 | 443 | | | | | | | | | | | | | | | | | | - | | | | | | | | | | ŀ | | | | | | Wood | Woodruff County | | | | | | } | | | L | | | | Agriculture | | | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | | | 0.00 | | | Commercial | 0.00 | | 0 | 0.00 | 0 ! | 0.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | | | | 0.00 | 0 | 0.00 | | | 0.00 | | | ndustnal | 0.25 2 | | 0 0 | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | 0 0 | 0.00 | | | | | 0.00 | 0 0 | 0.00 | 0.00 | 0 | 0.25 | 4 000 | | Mining | 105.24
0 00 0 | 0000 | 0 0 | 1.03 | 9 | 00.0 | 0 0 | 00.00 | 0 0 | 00.00 | | 0 0 | 00.0 | 0 0 | 00.00 | 0 0 | 00.00 | 00.00 | | 200.94 | 2,400 | | Power | 0.00 | 0.00 | 0 0 | 00.0 |) C | 0000 | 0 0 | 0000 | 0 0 | 0.00 | | | | | 000 |) c | 000 | | | 00.0 | | | Public Supply | 0.49 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 00.00 | 0 | 0.00 | | | 0.49 | | | TOTAL | 164.36 1,958 | | 0 | 1.63 | 10 | 0.00 | 0 | 0.00 | 0 | 0.00 | Ĭ | | | | 0.00 | 0 | 00.00 | tu) | 45 | 201.77 | 2,428 | | | | | | | 7 | 000000000000000000000000000000000000000 | | | | | Yel | Yell County | | | | | | | | | | | | | Agriculture | | | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | | | 0.00 | | | Commercial | 0.00 | 00:00 | 0 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 0 | | 0 | 0.00 | 0 | 0.00 | 0 0.00 | 0 | 0.00 | | | ndustrial | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 0.00 | 0 | 00.00 | | | 00.00 | 7 | | rrigation | | | 0 | 0.00 | 0 | 0.00 | 0 | 00.00 | 0 | 0.00 | | | | | 00.00 | 0 | 0.00 | | | 0.00 | | | Mining | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 0.00 | 0 | 0.00 | | | 00.00 | | | Power | | | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 00:00 | | | | | 0.00 | 0 | 00.00 | | | 0000 | | | Public Supply | 0.61 8 | 00.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | | | 00.00 | 0 | 0.00 | | 0 | 0.61 | | | TOTAL | | Ì | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.61 | 7 | | | | | 1 | | | | | | StateT | State Total County | | | | | | | | | | | | | Agricultura | 700 | 2 | C | U | C | 0.00 | C | 00.0 | C | 00.0 | 000 | 0 | 000 | - | 00.0 | 0 | 00.0 | 000 | C | 0.21 | | | Commercial | | | | 00.00 | 0 | 0.00 | | 0.00 | 4 | 0.00 | | | | | 00.00 | 0 | | | | 4.18 | 55 | | ndustrial | 8.13 37 | 7 6.82 | 6 | 42.22 | 100 | 0.00 | | 2.26 | 11 | 0.00 | | | | | 0.01 | H | | | | 60.24 | 169 | | Irrigation | 48,4 | | 39 | 66.37 | 275 | 0.00 | | 11.74 | 09 | 0.00 | | | | | 0.00 | 0 | | 18 | 1,30 | 8,054.05 | 50,188 | | Mining | 0.04 | 0.00 | 0 | 0.07 | €1 | 0.00 | 0 | 0.00 | | 0.00 | 0.01 | 1 2 | 00.00 | 0 | 0.00 | 0 | 2.35 | 00.00 | 1 | 2.47 | 16 | | Power | 1.27 | | 2 | 0.25 | 12 | 0.00 | 0 | 0.23 | m | 00.00 | 00.00 | 0 | 00.00 | | 00.00 | 0 | 00.00 | 00.00 | 0 | 2.94 | 32 | | Public Supply | | Ì | 24 | 50.55 | 249 | 0.45 | 10 | 25.56 | 82 | 00.00 | 1.97 | 7 25 | 2.64 | | 0.16 | 4 | 7.54 124 | | 14 | 178.54 | 728 | | 100 | 0 025 01 A0 75A | 18 17 | × | 159.45 | 637 | 0.45 | 10 | 39.83 | 151 | 000 | 31.5 | | 254 | 0, | 0.17 | | 171 75 | 105 10 | . 200 | 10 000 0 | 51 103 | ### **SUMMARY** The Ground Water Protection and Management Report for 2015 is a summary of the activities and significant findings of the Arkansas Natural Resources Commission (ANRC). This report is prepared annually in response to legislative mandates that direct the ANRC to study the State's ground-water resources. The purposes of the programs outlined in this report are to monitor the condition of the State's groundwater resources and to evaluate trends in water level and water quality fluctuations. The ANRC, the NRCS, and the USGS monitor over 1,000 water wells each year for water levels and prescribed water quality parameters. This monitoring is accomplished through a cooperative agreement with the ANRC, and the USGS. Spring water level measurements from 2014 to 2015 provided short term data indicating an overall average increase in water levels. The overall change in the alluvial aquifer for spring 2014 to spring 2015 was +0.28 feet with 46.7 percent of measured wells showing a water-level decline. Over the same time period the Sparta aquifer had an average change of +2.36 feet. Thirty-nine percent of the State's annual precipitation in 2015 came during the irrigation season mitigating the need for the use of groundwater for crop irrigation. This led to a slight increase in the potentiometric surface over the one year timeframe in both the alluvial and the Sparta/Memphis aquifers. The areas of heightened concern due to water-level decline continue to be in the Grand Prairie, South Arkansas, and Cache Study Areas. Fluctuations may be observed in ground-water levels over a short time period, however long term records illustrate the seriousness of the declines in ground-water levels as illustrated by the hydrographs and long term change maps. Arkansas is withdrawing ground water from the alluvial and Sparta aquifers in eastern and southern Arkansas at a rate which is far above sustainable. With this in mind, the ANRC should continue to promote conservation, education, and the conjunctive use of ground and surface-water at rates that are sustainable for current and future water use needs. ### <u>REFERENCES</u> - Ackerman, D. J., 1996, Hydrology of the Mississippi River Valley Alluvial Aquifer, South-Central United States: U. S. Geological Survey Professional Paper 1416-D, 56 p. - Alley, William M. and Leake, Stanley A., 2004, The Journey from Safe Yield to Sustainability, Ground Water Journal, Vol. 42, No. 1, January-February 2004, pp. 12-16. - Cushing, E. M., Boswell, E. H., and Hosman, R. L., 1964, General Geology of the Mississippi Embayment: U. S. Geological Survey Professional Paper 448-B. - Czarnecki, John B., Clark, Bryan R., and Reed, 2003, Thomas B. Conjunctive-Use Optimization Model of the Mississippi River Alluvial Aquifer of Northeastern Arkansas. USGS Water-Resources Investigations Report 03-4230, 29 p. - Czarnecki, John B., Clark, Bryan R., and Stanton, Gregory P., 2003, Conjunctive-Use Optimization Model and Sustainable-Yield Estimation for the Sparta Aquifer of Southeastern Arkansas and North Central Louisiana. USGS Water-Resources Investigations Report 03-4291, 30 p. - Czarnecki, John B., Clark, Bryan R., and Stanton, Gregory P., 2003, Conjunctive-Use Optimization Model of the Mississippi River Alluvial Aquifer
of Southeastern Arkansas. USGS Water-Resources Investigations Report 03-4233, 26 p. - Czarnecki, John B. and Fugitt, D. Todd, 2003, Ground-Water Models of the Alluvial Aquifer, USGS information sheet. - Fugitt, D.T., and Brazil, Kenneth W., Figure 2., Generalized Hydrologic Budget for Arkansas, 2015. Personal Communication. - Gonthier, G.J., and Mahon, G.L., 1993, Thickness of the Mississippi River Valley Confining Unit, Eastern Arkansas: U. S. Geological Survey Water-Resources Investigations Report 92-4121, 4 sheets. - Hayes, P. D., and Fugitt, D. T., The Sparta Aquifer in Arkansas' Critical Ground-Water Areas-Response of the Aquifer to Supplying Future Water Needs: U. S. Geological Survey Water-Resources Investigations Report 99-4075, 1999. - Hayes, P.D., 2000, sustainable yield estimation for the Sparta aquifer in Union County, Arkansas: U.S. Geological Survey Water Resources Investigation Report 99-4272, 17 p. - Holland, T.W., Water Use in Arkansas, 2005: USGS Scientific Investigations Report 2007-5241. 2008. - Holland, T.W., 2010, Estimated Water Use in Arkansas, 2009. Personal Communication - Holland, T. W., 2005, Water Use in Arkansas, 2003: USGS information sheet. - Holland, T. W., 1999, Water Use in Arkansas, 1995: U.S. Geological Survey Open-File Report 99-188, 1 sheet. - Holland, T. W., 1987, Use of Water in Arkansas, 1985: USGS Water Resources Summary Number 16. - Hosman, R.L., 1982, Outcropping Tertiary Units in Southern Arkansas: U. S. Geological Survey Miscellaneous Investigations Series, I-1405, 1 sheet. - Maimone, Mark, Defining and Managing Sustainable Yield. Ground Water Journal, Vol. 42, Nos. 6 and 7, pp797-1102. November-December 2004. - McKee, Paul W., Clark, Brian R., and Czarnecki, John B., 2003, Conjunctive-Use Optimization Model and Sustainable Yield Estimation for the Sparta Aquifer of Southeastern Arkansas and North-Central Louisiana. U.S. Geological Survey Water-Resources Investigations Report 03-4231. 30 p. - Kresse, Timothy M. and Clark, Brian R., 2008, Occurrence, Distribution, Sources, and Trends of Elevated Chloride Concentrations in the Mississippi Valley Alluvial Aquifer in Southeastern Arkansas. U.S. Geological Survey Scientific Investigations Report 2008-5193. - Pugh, A.L., Table 4. Groundwater Use in Arkansas by Aquifer and Use Type 2012. 2015. Personal Communication. - Pugh, A.L., Westerfield, P. W., and Poynter, D. T., 1997, Thickness of the Mississippi River Alluvial Aquifer in Eastern Arkansas: U. S. Geological Survey Water-Resources Investigations Report 97-4049, 1 sheet. - Scheiderer, Rheannon M. and Freiwald, David A., USGS Fact Sheet 2006-3090. 2006. - Schrader, T. P. Status of Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer in Arkansas and the Status of Water Levels in the Sparta Aquifer in Louisiana, Spring 2005. USGS Scientific Investigations Report 2007-5029, 66 p. - Schrader, T.P. Water Levels and Selected Water-Quality Conditions in the Mississippi River Valley Alluvial Aquifer in Eastern Arkansas, 2006. USGS Scientific Investigation Report 2008-5092, 82 p. - Schrader, T.P. and Blackstock, Joshua M. Water Levels in Aquifers in the Nacatoch Sand of Southwestern and Northeastern Arkansas and the Tokio formation of Southwestern Arkansas, Spring 2008. USGS Scientific Investigations Report 2010-5238. 22p. # Appendix A ### **Alluvial Aquifer Water Level Monitoring Data** | Station ID | | Latitude | Longitude | Date | 15 | Aq | Saturated | % | 14 | 2010 | 2005 | 14-15 | 10 - 15 | 05 - 15 | |-----------------------|--------|----------|------------|-----------|--------|-----------|----------------|-----------|--------|-----------------|--------|--------|---------|---------| | | | | | | WTO | Thickness | | Saturated | DTW | DTW | DTW | Change | Change | Change | | 02S04W11DBB1 343232.9 | 34323 | 2.9 | 912415 | 4/1/2015 | 80.66 | 145.3 | 46.2 | 31.81 | 100.76 | 98.75 | 8.66 | 1.68 | -0.33 | 0.72 | | 02S05W15AAB1 34.53686 | 34.536 | 98 | -91.524089 | 3/11/2015 | 120.15 | | | | | 113.6 | 106.4 | | -6.59 | -13.75 | | 02S05W31BBB1 34.49353 | 34.493 | 53 | -91.593394 | 3/11/2015 | 10.56 | | | | | | 16.00 | | | 5.44 | | 03S04W02BBB1 34.47538 | 34.475 | 88 | -91,415125 | 4/1/2015 | 93.55 | | | | | 92.99 | 91.85 | | -0.56 | -1.70 | | 03S02W27ABB1 342447.9 | 342447 | 6 | 911251.01 | 4/1/2015 | 64.8 | 155.6 | 8.06 | 58,35 | 64.04 | 61.96 | 8.79 | -0.76 | -2.84 | 3.00 | | 03S03W05CCD1 342737 | 34273 | 7 | 912131.83 | 4/1/2015 | 99.37 | 128.9 | 29.5 | 22.91 | 100.25 | 98.33 | 97.6 | 0.88 | -1.04 | -1.77 | | 03S03W18CCC1 342553 | 34255 | က္က | 912251 | 2/4/2015 | 101.31 | 116.5 | 15.2 | 13.04 | 103.35 | 99.56 | | 2.04 | -1.75 | | | 03S03W27BBC1 342454.7 | 34245 | 4.7 | 911944.08 | 4/1/2015 | 94.0 | 134.0 | 40.0 | 29.85 | 90.87 | 92.5 | 6.06 | -3.13 | -1.50 | -3.10 | | 03S04W03DCA16 342753 | 3427 | က္ထ | 912515.37 | 4/24/2015 | 101.54 | 126.5 | 25.0 | 19.73 | 101.65 | 101.1 | 8.66 | 0.11 | -0.42 | -1.74 | | 03S05W03CCC1 342752.2 | 34275; | 2.2 | 913227.43 | 3/11/2015 | 104.48 | | | | 103.64 | 103.6 | | -0.84 | -0.89 | | | | 34263 | 0 | | 2/4/2015 | 106.62 | 130.5 | 23.9 | 18,30 | 106.83 | 108.8 | | 0.21 | 2.18 | | | 03S05W24DAA1 342525.2 | 34252 | 7 | 912921.98 | 3/11/2015 | 55.15 | | | | 64.27 | 44.01 | | 9.12 | -11.14 | | | 100 | 342411 | 4 | 1 | 3/11/2015 | | | | | 59.99 | 52.77 | 52.8 | -0.21 | -7.43 | -7.40 | | 04S03W17ADD1 342101.9 | 342101 | o, | 912058.11 | 4/1/2015 | 109.67 | 154.7 | 45.0 | 29,11 | 108.31 | 108.5 | 107.13 | -1.36 | -1.19 | -2.54 | | 04S04W02ABB1 342313.2 | 342313 | S | 912423.69 | 4/1/2015 | 110.85 | 142.9 | 32.1 | 22.43 | 111.31 | 109.1 | 111.5 | 0.46 | -1.80 | 0.65 | | 04S01W19AAD 34.33659 | 34.336 | က္က | -91.155372 | 4/1/2015 | | | | | | | 62.95 | | | 2.42 | | 04S01W31DCB1 34.29811 | 34.298 | _ | -91.163706 | 4/1/2015 | | 7 | | | | 50.15 | 52.05 | | -0.15 | 1.75 | | 05S01W16BAB1 341551.6 | 341551 | 9 | 910729.49 | 3/31/2015 | 49.5 | 152.7 | 103.2 | 67.58 | 48.68 | 48.71 | 45.5 | -0.82 | 62'0- | -4.00 | | | 34162 | 4 | 912046 | 2/4/2015 | 114.74 | 6.791 | 53.2 | 31.66 | 115.46 | 112.2 | | 0.72 | -2.55 | | | 05S03W21BSS1 34.25294 | 34.252 | 94 | -91.343044 | 3/31/2015 | 113.7 | | | | | | 113.4 | | | -0.30 | | | 34.253 | 04 | -91.324861 | 3/31/2015 | 122.15 | | | | | | 110.9 | | | -11.25 | | 6.5 | 341555 | 7 | 912931.61 | 3/31/2015 | 73.55 | 176.4 | 102.9 | 58,30 | 73.83 | 72.85 | 74.45 | 0.28 | -0.70 | 0.90 | | | 34131 | 9 | 912821.81 | 3/31/2015 | 55.41 | 173.0 | 117.6 | 67.97 | 57.21 | 56.56 | 59.13 | 1.80 | 1.15 | 3.72 | | 06S02W23DCD1 340852.6 | 340852 | 9 | 911206.48 | 4/6/2015 | 59.06 | 170.0 | 110.9 | 65.26 | 62.65 | 63.46 | 50.5 | 3.59 | 4.40 | -8.56 | | | 34113 | 98 | 911953.82 | 3/31/2015 | 82.06 | 178.1 | 96.0 | 53.92 | 86.65 | 77.27 | 81.5 | 4.59 | -4.79 | -0.56 | | 06S03W27AAA1 340857.6 | 34085 | 9.7 | 911912.78 | 4/6/2015 | 0.99 | 173.1 | 107.1 | 61.87 | 68.11 | 61.49 | 66.7 | 2.11 | -4.51 | 0.70 | | 06S03W32DDD1 34.12778 | 34.127 | 78 | -91.354167 | 2/4/2015 | 55.54 | | | | | 54.24 | 56.38 | | -1.30 | 0.84 | | 07S02W04BBB1 34.11865 | 34.118 | 365 | -91.247747 | 4/6/2015 | 47.78 | | | | | 39.05 | 36.00 | | -8.73 | -11.78 | | 1.3 | 34043 | 5.3 | 912316.09 | 4/6/2015 | 40.05 | 142.1 | 102.1 | 71.82 | 42.48 | 39.66 | 44.00 | 2.43 | -0.39 | 3.95 | | 07S03W32BBC1 340240 | 3402 | 40 | 912216 | 4/6/2015 | 23.9 | 154.1 | 130.2 | 84.49 | 24.26 | 23.17 | 24.81 | 0.36 | -0.73 | 0.91 | | 08S03WT2299 340147.5 | 34014 | 7.5 | 912202.5 | 4/6/2015 | 22.22 | 162.1 | 139.9 | 86.29 | 24.66 | 20.34 | 21.00 | 2.44 | -1.88 | -1.22 | | | | | | | | | | | | | | | F 32 | Ĭ | | | | | | | | A | Avg % Saturate | 47.09 | Dec | Declines/ Wells | ells | 6/22 | 24/27 | 14/26 | | | | | | | | | | | Aver | Average Change | ange | 1.17 | -2.08 | -1.72 | | | | | | | | | | | | | | | P | | | 15S07W21CBA1 332315.7 | 33231 | 5.7 | 915001.37 | 2/27/2015 | 4.05 | | | | 3.84 | 4.24 | 4.70 | -0.21 | 0.19 | 0.65 | | | 3316 | 40 | 913958 | 2/27/2015 | XE | | | | 80.66 | 78.17 | | 0.68 | -1.81 | | | 16S06W27BAB1 331729 | 3317 | .59 | | 3/4/2015 | | | | | 86.75 | 83.45 | 83.55 | 0.95 | -2.35 | -2.25 | | | 3315 | 28 | 913010 | 3/3/2015 | | 159.9 | 125.6 | 78.55 | 35.91 | 27.31 | 25.45 | 1.61 | -6.99 | -8.85 | | 17S04W15DDC1 331252.5 | 33125 | 52.5 | 912954.09 | 3/3/2015 | 30.6 | 187.9 | 157.3 | 83.71 | 32.25 | 26.47 | 18.4 | 1.65 | -4.13 | -12.20 | | 7S04W21ABA1 331252 | 3312 | 52 | 913108 | 3/3/2015 | | 188.2 | 162.75 | 86.48 | 28.44 | 21.87 | 17.7 | 2.99 | -3.58 | -7.75 | | | 1 | | | | | | | | | | | | | | | 05 - 15 | Change | -0.70 | -3.57 | 0.80 | -3.65 | 710 | 611 | 4.17 | | -5.90 | -11.71 | -8.50 | | -3.02 | | 1 | 4/4 | -7.28 | | 1.40 | -0.20 | -3.20 | -14.50 | -11.80 | -3.20 | -3.05 | -3.80 | 0.50 | -0.40 | -1.60 | -3.70 | -5.90 | -9.70 | 1.40 | -1.80 | -3.50 | 1.30 | 4.80 | | | -6.10 | |------------|-----------|--------------|--------------|--------------|--------------|-----------------|----------------|----------------|---|--------------|--------------|--------------|--------------|--------------|--------------|------------|-----------------|----------------|---|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | 10 - 15 | Change | -0.73 | -5.20 | 0.77 | -1.05 | 0140 | 01/0 | -2.49 | | -3.78 | -10.07 | -9.06 | -1.59 | -4.40 | 6.54 | | 9/9 | -3.73 | | 0.29 | | | | | | | | | | | -3.83 | | -9.54 | | -1.76 | -2.35 | | | | | | | 14-15 | Change | | -4.66 | 0.40 | 0.45 | orc | 617 | 0.43 | | -0.43 | -3.92 | -3.63 | 0.12 | 90'0- | | | 4/5 | -1.58 | | -0.54 | 0.10 | 2.40 | -6.60 | -0.40 | 08'0 | 0.13 | 0.20 | 0.70 | -1.40 | 1.00 | -0.50 | | 2.51 | 0.70 | 99'0- | -0.44 | 4.00 | 3.10 | 1.30 | 3.80 | 1.10 | | 2005 | DTW | 72.3 | 86.55 | 85.2 | 27.35 | ollo | CIID | ange | | 38.8 | 24.81
| 28.2 | | 11.6 | | | ells | ande | 9 | 7.3 | 6.6 | 21.0 | 32.6 | 32.2 | 20.5 | 18.05 | 16.8 | 6.6 | 12.0 | 6.5 | 17.0 | 18.5 | 31.5 | 5.7 | 19.80 | 29.0 | 16.3 | 7.7 | | | 27.10 | | 2010 | DTW | 72.27 | 84.92 | 85.17 | 29.95 | Doctings (Wolls | A SEIII | Average Change | | 40.92 | 26.45 | 27.64 | 31.75 | 10.22 | 19.24 | | Declines/ Wells | Average Change | | 6.19 | | | | | | | | | | | 16.87 | | 31.66 | | 19.84 | 30.15 | | | | | | | 41 | DTW | | 85.46 | 84.8 | 31.45 | Dog | narr. | Ave | 1 | 44.27 | 32.6 | 33.07 | 33.46 | 14.57 | | | Dec | Ave | | 5.36 | 6.9 | 26.6 | 40.5 | 43.6 | 24.5 | 21.23 | 20.8 | 6.8 | 11.0 | 9.1 | 20.2 | | 43.71 | 5.0 | 20.94 | 32.06 | 19.0 | 0.9 | 7.1 | 19.2 | 34.3 | | % | Saturated | | | | | 82.04 | 02.31 | | | 44.47 | 59.65 | 64.78 | 69.22 | 89.99 | Y | | 65.62 | | | 95.43 | | 82.50 | 63.77 | | 83.24 | 84.60 | 83.51 | 94.28 | 91,30 | | 80.42 | | 63.18 | 93.97 | 1000 | | | | | | | | Saturated | #1 | | | | | or 0/ Cotumot | Avg % Saturate | | | 35.8 | 53.98 | 67.5 | 74.96 | 131.38 | | | Avg % Saturate | | | 123.3 | | 114.1 | 82.9 | | 117.7 | 115.9 | 104.3 | 100.6 | 130.2 | | 85 | | 7.07 | 29 | | | | | | | | | Aq | Thickness | | | | | - × | ¥ | | 9 | 80.5 | 90.5 | 104.2 | 108.3 | 146.0 | | | A | | | 129.2 | | 138.3 | 130.0 | 7.5 | 141.4 | 137.0 | 124.9 | 106.7 | 142.6 | | 105.7 | | 111.9 | 71.3 | | | | | | | | | 15 | DTW | 73.0 | 90.12 | 84.4 | 31.0 | | | | 4 | 44.7 | 36.52 | 36.7 | 33.34 | 14.62 | 12.7 | | | | | 5.9 | 6.8 | 24.2 | 47.1 | 44.0 | 23.7 | 21.1 | 20.6 | 6.1 | 12.4 | 8.1 | 20.7 | 24.4 | 41.2 | 4.3 | 21.6 | 32.5 | 15.0 | 2.9 | 5.8 | 15.4 | 33.2 | | Date | | 3/4/2015 | 3/4/2015 | 4/1/2015 | 3/4/2015 | | | | | 2/26/2015 | 3/3/2015 | 3/3/2015 | 3/3/2015 | 2/26/2015 | 3/3/2015 | | | | | 5/4/2015 | 5/15/2015 | 5/13/2015 | 5/13/2015 | 5/15/2015 | 5/13/2015 | 5/13/2015 | 5/13/2015 | 5/15/2015 | 5/13/2015 | 5/13/2015 | 5/4/2015 | 5/15/2015 | 5/5/2015 | 5/13/2015 | 5/4/2015 | 5/4/2015 | 5/15/2015 | 5/15/2015 | 5/15/2015 | 5/13/2015 | 5/13/2015 | | Longitude | | -91.693459 | 915225.12 | 915528.46 | 914607.92 | | | | * | 912245.53 | 912620 | 911919.83 | 912334 | 912341 | -91,235067 | Lancau and | | | | 901153.03 | 901117 | 904125 | | 902815 | 904225 | 904131.25 | 903454 | 900628 | | 903132 | 902607.97 | -90.268713 | 901550.33 | 900851 | 904157.11 | 904049.99 | 901700 | 901402 | 806006 | | 903132 | | Latitude | | 33.1804 | 331015 | 330624.8 | 330403.6 | | | | 2 | 333154.1 | 333011.1 | 332226.6 | 331818 | 330728 | 33.04732 | | | | | 361323.2 | 361253 | 361649 | 361716 | 361642 | 362112 | 362444.3 | 362003 | 361904 | 362738 | 362704 | 362604.9 | 36.47645 | 362650.9 | 362447 | 361655 | 361654.4 | 361519 | 361729 | 361539 | 362425 | 362118 | | Station ID | | 17S06W35CAC1 | 18S08W01AAB1 | 18S08W28DDD2 | 19S06W07BCC1 | | | | | 13S03W35BAC1 | 14S03W07BBD1 | 15S02W20DDC1 | 16S03W15DAD1 | 18S03W22ABA2 | 19S01W17BBC1 | | | | | 18N08E03DAB1 | 18N08E11BAA1 | 19N04E19BAA1 | 19N05E15BBD1 | 19N06E18DBC1 | 20N03E25BAA1 | 20N04E06BB1 | 20N05E30CAC1 | 20N09E33DDC1 | 21N03E15CBC1 | 21N05E22BAB1 | 21N06E28BB1 | 21N07E01DDC1 | 21N08E18CCC1 | 21N09E31BDA1 | 19N03E24AAA1 | 19N04E19AAA1 | 19N07E25BCB1 | 19N08E08DCA1 | 19N09E19CDC1 | 20N04E03ADA1 | 20N05E22CAD1 | | County | | Ashley | Ashley | Ashley | Ashley | | | | | Chicot | Chicot | Chicot | Chicot | Chicot | Chicot | | | | | Clay | 05 - 15 | Change | -6.55 | -5.00 | 0.20 | -0.10 | -2.70 | -1.70 | -1.20 | | 21127 | -2.97 | | -3.90 | -3.25 | -4.70 | | -1.70 | -6.60 | -7.50 | | -9.39 | -2.20 | -0.06 | -3.50 | -7.50 | -17.80 | -13.10 | -2.50 | -0.70 | -6.10 | -8.50 | -6.00 | -5.70 | | -9.90 | -4.30 | -5.20 | -2.90 | | 23/23 | -5.78 | |------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---|-----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----|-----------------|----------------| | 10 - 15 | Change | -4.21 | | | | | | | | 9/9 | -3.57 | | -2.80 | -3.05 | | | | | | | -4.50 | | 0.03 | | | | -7.83 | | | | | | | | | | | | 1 | 4/5 | -3.63 | | 14-15 | Change | -0.39 | 0.00 | 2.10 | -3.30 | 2.50 | 2.60 | 5.60 | | 9/28 | 0.73 | 0.20 | 1.20 | -0.57 | -0.20 | -0.20 | -0.30 | -0.60 | 0.50 | | 0.63 | 1.90 | -0.59 | -0.50 | 0.00 | -2.50 | 2.38 | 08'0 | 1.20 | -0.10 | -1.00 | 0.40 | 08.0 | 1.50 | -0.20 | 0.20 | 1.80 | -1.50 | | 12/26 | 0.18 | | 2005 | | 27.75 | 19.60 | 7.90 | 7.5 | 17.60 | 10.80 | 18.80 | | Vells | ange | | 21.9 | 11.6 | 8.3 | | 4.7 | 5.50 | 50.5 | | 76.35 | 19.2 | 1.50 | 34.5 | 10.5 | 101.70 | 102.20 | 24.0 | 25.60 | 11.90 | 18.5 | 49.50 | 0.09 | | 3.50 | 32.0 | 48.0 | 11.0 | | Vells | ange | | 2010 | DTW | 30.09 | | | | | | | | Declines/ Wells | Average Change | | 23.0 | 11.8 | 100 | | | | | | 81.24 | | 1.59 | 4.00 | | | 107.5 | | | | | | | | | | | | | Declines/ Wells | Average Change | | 14 | DTW | 33.91 | 24.6 | 9.8 | 4.3 | 22.8 | 15.1 | 25.6 | | Decl | Avera | 70.8 | 27.0 | 14.28 | 12.8 | 13.8 | 6.1 | 11.5 | 58.5 | | 86.37 | 23.3 | 0.97 | 37.5 | 18.0 | 117.0 | 117.68 | 27.3 | 27.5 | 17.9 | 26.0 | 55.9 | 0.99 | 76.5 | 13.2 | 36.5 | 55.0 | 12.4 | | Decl | Avera | | % | Saturated | | | | | | | | | 83.29 | | 23.84 | 76.11 | | Y | Y | | 1 | 42,46 | | 19.79 | | 98.38 | | 76.89 | | | | | | | 1 | | | | | | | 12 | 60.80 | | | Saturated | ft. | | | | | | | | | Avg % Saturate | | 22.1 | 82.2 | | | | | | 42.8 | | 21.16 | | 94,44 | | 59.9 | | | | | | | | | | | | | | | Avg % Saturate | | | Ag | Thickness | | | | | | 1 | 5 | | A | | 92.7 | 108.0 | | | | | | 100.8 | 11.7 | 106.9 | | 96.0 | | 77.9 | | | | | | 1 | J | | | 9 | | 9 | | | A | | | 15 | DTW | 34.3 | 24.6 | 7.7 | 9.7 | 20.3 | 12.5 | 20.0 | | | | 9.07 | 25.8 | 14.85 | 13.0 | 14.0 | 6.4 | 12.1 | 58.0 | 59.0 | 85.74 | 21.4 | 1.56 | 38.0 | 18.0 | 119.5 | 115.3 | 26.5 | 26.3 | 18.0 | 27.0 | 55.5 | 65.7 | 75.0 | 13.4 | 36.3 | 53.2 | 13.9 | | | | | Date | | 5/4/2015 | 5/15/2015 | 5/15/2015 | 5/13/2015 | 5/13/2015 | 5/13/2015 | 5/15/2015 | Table 1 and | 1. 1.7 | | 7/17/2015 | 4/27/2015 | 4/27/2015 | 4/17/2015 | 4/17/2015 | 4/17/2015 | 4/17/2015 | 4/10/2015 | 4/17/2015 | 4/22/2015 | 4/17/2015 | 4/27/2015 | 4/17/2015 | 4/10/2015 | 4/17/2015 | 4/28/2015 | 4/10/2015 | 4/17/2015 | 4/17/2015 | 4/10/2015 | 4/17/2015 | 4/17/2015 | 4/10/2015 | 4/17/2015 | 4/10/2015 | 4/28/2015 | 4/17/2015 | | | | | Longitude | | 903117.17 | 902620 | 901220 | 900642 | 904214 | 903853 | 901217 | | | | 905736 | 903656 | 903243 | 903045 | 902701 | 901901 | 902158 | 905828 | -91,002899 | 905124.5 | 902934 | 902559.08 | 903241 | 902706 | 904652 | 904712.98 | 903857 | 903829 | 903202 | 903547 | 905816 | 910121 | 905129 | 901831 | 904930 | 904802.05 | 901831 | | | | | Latitude | | 361939.3 | 362327 | 362111 | 362306 | 362450 | 362828 | 362848 | | | | 354430 | 354635 | 354449 | 354451 | 354450 | 354642 | 354716 | 355204 | 35.83035 | 354915.7 | 355234 | 354911.5 | 355513 | 355744 | 354322 | 354403.3 | 354521 | 354340 | 354648 | 354637 | 355246 | 354817 | 355007 | 354956 | 355626 | 355502.2 | 355241 | | | | | Station ID | | 20N05E34DBA1 | 20N06E09BBA1 | 20N08E22BDC1 | 20N09E09ABC1 | 21N03E36CDD1 | 21N04E09DBC1 | 21N08E03CDB1 | | | | 13N01E23CAB1 | 13N04E12ABB1 | 13N05E22BAD1 | 13N05E24BAC1 | 13N06E21AAA1 | 13N07E02CAB1 | 13N07E05ABB1 | 14N01E10BAB1 | 14N01E20DA1 | 14N02E27AAA1 | 14N06E06BAA1 | 14N06E27AAB1 | 15N05E22BAB1 | 15N06E04BAD1 | 13N03E28CDB1 | 13N03E29AAA1 | 13N04E15DBA1 | 13N04E26BCC1 | 13N05E02CCC1 | 13N05E06DCC1 | 14N01E03ACB1 | 14N01E31DCA1 | 14N02E22AAA1 | 14N07E14DDC1 | 15N02E12DCB1 | 15N03E19ADA1 | 15N07E35DCB1 | | | | | County | | Clay | | | Craighead | | | | 05 -
15
Change | -3.45 | -5.20 | -5.10 | -4.05 | | -1.50 | -1.90 | | -1.54 | -1.42 | | 8/8 | -3.02 | | | | -8.21 | -5.98 | | ĺ | -5.85 | -7.29 | | | | 200 | -3.58 | -3.50 | | -5.21 | | | -14.00 | | | | 1.55 | -6.88 | -0.50 | | |-------------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|-----------------|----------------| | 10 - 15
Change | -0.71 | -5.14 | -4.13 | -1.98 | -2.98 | 3.49 | 0.95 | -1.83 | -0.99 | | | 6/2 | -1.48 | | | | -4.69 | -3.22 | | -1.87 | -3.72 | -6.92 | | | | | -1.18 | | | -2.43 | | -3.69 | | | | | 1,15 | -3.54 | | | | 14-15
Change | | | -1.02 | -0.59 | -0.23 | 1.87 | 5.56 | -0.10 | -0.86 | | | 2/12 | 99'0 | -1.50 | 00'0 | -0.26 | -1.48 | -0.92 | 1.00 | 0.00 | -0.67 | -2.15 | 0.80 | 08'0 | -0.70 | 00'0 | 1.74 | 1.80 | 0.80 | -4.13 | -1.70 | -0.93 | -2.30 | -1.50 | -0.20 | 09'0 | 69'0- | -0.15 | -0.40 | -1.50 | | 2005
DTW | 10.8 | 13.5 | 17.4 | 28.05 | | 06'9 | 28.4 | | 28.5 | 12.87 | | /ells | ange | | | | 75.4 | 80.57 | | | 71.0 | 2.96 | | | | | 36.10 | 87.0 | | 26.6 | | | 82.0 | | | | 30.70 | 72.5 | 72.0 | | | 2010
DTW | 13.54 | 13.56 | 18.37 | 30.12 | 34.12 | 11.89 | 31.25 | 31.34 | 29.05 | | 12.3 | Declines/ Wells | Average Change | | | | 78.92 | 83.33 | | 73.13 | | - | | | | | 38.5 | | | 29.38 | | 94.86 | | | | | 30.30 | - | - | | | 14
DTW | | | 21.48 | 31.51 | 36.87 | 10.27 | 35.86 | 33.07 | 29.18 | | | Dec | Ave | 68.0 | 42.0 | 77.74 | 82.13 | 85.63 | 82.8 | 75.0 | 76.18 | 101.84 | 32.6 | 27.8 | 43.0 | 36.0 | 37.94 | 92.3 | 32.8 | 27.68 | 92.5 | 97.62 | 93.7 | 0.96 | 16.3 | 30.6 | 28.56 | 79.23 | 72.1 | 106.5 | | %
Saturated | | | 100 | 77.80 | 73.15 | 92.82 | 77,90 | 77.53 | 75.72 | 7 6 6 | | 76.55 | | | 5.4 | | 4 | 44.55 | | | 49.71 | | | | | | | | | 77.60 | | 33,73 | | K | | | 76.81 | X | | | | Saturated | | | | 112.5 | 101.1 | 108.6 | 106.8 | 114.43 | 93.66 | | | Avg % Saturate | + | | | | | 69.55 | | | 75.95 | | | | | | | | | 110.19 | | 50.15 | | | | | 96.55 | | | | | Ag
Thickness | | | | 144.6 | 138.2 | 117.0 | 137.1 | 147.6 | 123.7 | | | Aı | | | | | | 156.1 | | | 152.8 | | | | | | | | | 142.0 | 7-1 | 148.7 | | | | | 125.7 | | | | | 15
DTW | 14.25 | 18.7 | 22.5 | 32.1 | 37.1 | 8.4 | 30.3 | 33.17 | 30.04 | 14.29 | | | | 69.5 | 42.0 | 78.0 | 83.61 | 86.55 | 81.8 | 75.0 | 76.85 | 103.99 | 31.8 | 27.0 | 43.7 | 36.0 | 39.68 | 90.5 | 32.0 | 31.81 | 94.2 | 98.55 | 96.0 | 97.5 | 16.5 | 30.0 | 29.15 | 79.38 | 72.5 | 108.0 | | Date | 4/8/2015 | 4/8/2015 | 4/9/2015 | 4/9/2015 | 4/9/2015 | 4/9/2015 | 4/9/2015 | 4/28/2015 | 4/9/2015 | 4/28/2015 | , | | 7 T | 5/15/2015 | 5/6/2015 | 5/6/2015 | 4/14/2015 | 4/14/2015 | 5/15/2015 | 5/15/2015 | 4/14/2015 | 4/14/2015 | 5/6/2015 | 5/6/2015 | 5/6/2015 | 5/6/2015 | 4/21/2015 | 5/5/2015 | 5/15/2015 | 4/21/2015 | 5/6/2015 | 4/21/2015 | 5/6/2015 | 5/6/2015 | 6/6/2015 | 5/15/2015 | 4/21/2015 | 4/14/2015 | 5/15/2015 | 5/6/2015 | | Longitude | -90.341628 | -90.361069 | 901807.57 | 902129 | 902358.97 | 900933.58 | 901811.95 | 901933 | 901924.64 | -90.213892 | | | | 905132 | 903432 | 910134.5 | 905705.29 | 905113 | 905040 | 905152 | 7 | 904810.28 | 903925 | 903926 | 903103 | 903352 | 903044.79 | | 903508 | 2 | | | 905605 | 905444 | 903648 | 903525 | 903512.11 | 910049.05 | 910010 | 904737 | | Latitude | 35.0165 | | 350849.6 | 351504 | 351041.9 | 351453.3 | 351828.3 | 351630 | 352447.6 | 35.36192 | | | | 350934 | 351042 | 351547.5 | 351501.3 | 351508 | 351447 | 351142 | 351138.1 | 351045.3 | 351546 | 351220 | 351600 | 351358 | 351228.9 | 351855 | 351904 | 351631.7 | 352608 | 352505 | 352155 | 352213 | 352622 | 352151 | 352150.5 | 351517.5 | 351134 | 351558 | | Station ID | 05N07E34BAB1 | 05N07E28CBA | 06N07E13BAA1 | 07N07E05DAD1 | 07N07E31CCC1 | 07N09E05CDD1 | 08N07E13CCC2 | 08N07E35BCB1 | 09N07E10DDA1 | 09N08E35BBD2 | | | | 06N02E11BDB1 | 06N05E05AAA1 | 07N01E06CAA1 | 07N01E11AAA1 | 07N02E02CDD1 | 07N02E12BBC1 | 07N02E29CCC1 | 07N02E29DDC1 | 07N03E32DCC1 | 07N04E03BDA1 | 07N04E27BDA1 | 07N05E02AAB1 | 07N05E16ACA1 | 07N05E25ABA1 | 08N01E16DBB1 | 08N05E17CAA1 | 08N05E32ADD1 | 09N01E04ACD1 | 09N01E12CBB1 | 09N01E36AAB1 | 09N02E32BBB1 | 09N04E01AAC1 | 09N05E32BCB1 | 09N05E32BDB1 | 07N01E05CDA1 | 07N01E33BBA1 | 07N03E05AAD1 | | County | Crittenden | | | Cross | 05 - 15
Change | -3.90 | | | -19.50 | -8.43 | -9.30 | -5.00 | | -16.08 | | 16/17 | -7.16 | | 0.10 | -3.37 | -5.09 | -5.64 | | -6.50 | -4.25 | | 5/6 | 4.13 | | -7.75 | 9.10 | -7.20 | -7.55 | | 3/4 | -3.35 | 800 | 40 | 0.40 | | -7.25 | -7.00 | | | |-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|-----------------|----------------|---|-------------|--------------|--------------|--------------|--------------|--------------|--------------|---|-----------------|----------------|------|--------------|--------------|--------------|--------------|---------|-----------------|----------------|-------------|---------------|------------------|--------------|--------------|--------------|--------------|-------------| | 10 - 15
Change | -2.76 | | | | -4.12 | | | | -14.98 | | 12/13 | 4.00 | | | -2.86 | -7.25 | -3.66 | -2.27 | | -3.89 | | 5/5 | -3.99 | 1.00 | -7.37 | 10.17 | -7.40 | -5.98 | | 3/4 | -2.65 | 236 | 22 | | | -7.29 | | | | | 14-15
Change | -0.51 | 0:30 | -1.90 | -4.50 | 22'0- | -1.10 | -1.00 | -3.60 | -10.25 | | 26/36 | -1.12 | | | | 90'0- | | | -0.24 | | | 2/2 | -0.15 | | 7-0-0-1 | 13.19 | 0.27 | | | 0/2 | 6.73 | 906 | 00.0 | -0.20 | -0.30 | 2.81 | 00'0 | 0.80 | -0.50 | | 2005
DTW | 110.8 | _ | | 80.0 | 79.8 | 89.0 | 86.0 | | 105.9 | | Vells | lange | | 10.6 | 4.84 | 28.73 | 32.58 | | 31.5 | 29.70 | | Vells | lange | | 24.56 | 2 | 22.4 | 15.7 | | Vells | lange | 28.0 | Ľ | 00.10 | | _ | 31.30 | | | | 2010
DTW | 111.9 | | | | 84.11 | | | 14 | 107.0 | | Declines/ Wells | Average Change | | | 5.35 | 26.57 | 34.56 | 40.05 | | 30.08 | 1 | Declines/ Wells | Average Change | | 24.94 | 36.37 | 22.2 | 17.27 | | Declines/ Wells | Average Change | 32 53 | 00.00 | | | 22.36 | | | | | DTW | , | 93.3 | 9.77 | 95.0 | 87.46 | 97.2 | 0.06 | 106.7 | 111.73 | | Dec | Aver | | | | 33.76 | | | 37.76 | | | Dec | Aver | | | 39.39 | 29.87 | | | Dec | Aver | 27.85 | 00.00 | 20.00 | 37.2 | 32.46 | 38.3 | 36.9 | 39.1 | | %
Saturated | | | | | | | | | | | 59,80 | | | | 8 1 1 | 75.63 | | | | | | 68,43 | | | #DIV/0! | 77,85 | 80.16 | | 3000348 | 66.14 | | | 01.00 | 63.19 | 66.73 | A TOTAL OF | 53.97 | 73.73 | | | Saturated | | | | | | | | | | | Avg % Saturate | | | | | 104.98 | | | | | | Avg % Saturate | | | -32.31 | 92.1 | 119.6 | | | Avg % Saturate | | | 1, 00 | 1.50 | 75.2 | | 44.9 | 101.3 | | | Aq
Thickness | | | | | | | | | | | A | | | | | 138.8 | | | | | | A | | | | 118.3 | 149.2 | | | A | | | 1001 | 1.021 | 112.7 | | 83.2 | 137.4 | | | 15
DTW | 114.7 | 93.0 | 79.5 | 99.5 | 88.23 | 98.3 | 91.0 | 110.3 | 121.98 | | | | | 10.5 | 8.21 | 33.82 | 38.22 | 42.32 | 38.0 | 33.95 | | | | | 32.31 | 26.2 | 29.6 | 23.25 | | | | 34 80 | 27.0 | 0.70 | 37.5 | 29.65 | 38.3 | 36.1 | 39.6 | | Date | 4/14/2015 | | 5/5/2015 | 5/6/2015 | 4/21/2015 | 5/5/2015 | 5/6/2015 | 5/5/2015 | 4/21/2015 | Physical C | | | | 5/5/2015 | 5/6/2015 | 3/12/2015 | 3/3/2015 | 3/11/2015 | 3/11/2015 | 3/11/2015 | | | 1 | | 4/27/2015 | 3/10/2015 | 3/10/2015 | 3/11/2015 | | | | 210CISCIV | 410710015 | | 4/27/2015 | 5/4/2015 | 4/27/2015 | | 4/27/2015 | | Longitude | 904738.6 | 905736 | 910046 | 905354 | 910000.6 | 905342 | 905551 | 904529 | 904725.6 | | | | | -91050944 | -91,393939 | 911529.64 | -91,415739 | -91.306944 | | -91.292989 | | | | 1000 | 912842 | | | -91.51675 | | | | 901515 85 | 004647 | 904047 | 904742 | 902657.01 | 904352 | 904735 | 904437 | | <u>Latitude</u> | 351548.9 | 352023 | 351852 | 351923 | 352202.8 | 352402 | 352243 | 352630 | 352408.8 | | | | 1 | 34.07455 | 33.96748 | 335256.6 | 33.9134 | 33.82111 | 335048 | 33.53999 | | | | | 334144 | 334546.5 | 334133.9 | 33.53513 | | | | 360315.0 | 360040 | 300043 | 355957 | 355938.3 | 360806 | 360317 | 360347 | | Station ID | 07N03E05ADA1 | 08N01E02CDD1 | 08N01E17CAD1 | 08N02E17AAA1 | 09N01E33BBA2 | 09N02E20AAA1 | 09N02E30CBB1 | 09N03E03ACA1 | 09N03E17DDC1 | | | | | 07S01E19ABA | 08S03W33ABD1 | 09S02W26DDC1 | 09S03W17DCB1 | 10S02W20ADA1 | 10S04W12CCB1 | 13S02W27CAC1 | | | | | 11S04W35CDD1 | 11S05W08CCC1 | 12S04W03ABB1 | 13S04W33BAA1 | | | | 16NO3E03BA1 | 46NI02E46DDD4 | I GIAGOE I GUUDI | 16N03E20CDA1 | 16N06E28ABB1 | 17N03E02DCC1 | 17N03E32CDC1 | 17N03E35CB1 | | County | Cross | | | | Desha | | | | Drew | Drew | Drew | Drew | | | | Groon | Croops | o leelle | Greene | Greene | Greene | Greene | Greene | | 05 - 15 | Change | | | -11.10 | | | -0.40 | -3.20 | | | -4.45 | -3.20 | -2.86 | - Y | -8.60 | 1.30 | -2.70 | | 12/13 | 4.69 | | | -6.53 | 0.78 | 1.48 | | | 2.02 | | 1/4 | -0.56 | | | | 7.29 | | -7.98 | 100 | -2.71 | | -1.40 | -4.60 | |------------|-----------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|--------------|---|-----------------|----------------|-----|-------------|-------------|-------------|--------------|-------------|-------------|--------------|---|-----------------|----------------|------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------| | 10 -
15 | Change | | -2.36 | | | | | | | | -7.87 | | -1.99 | 96.7- | | | | | 9/9 | 4.97 | | | -5.99 | | -3.98 | | | -1.08 | | 3/3 | -3.68 | | | | 12.79 | | -4.68 | 77 | -4.76 | -3.91 | -3.75 | | | 14-15 | Change | -0.90 | 3.49 | -3,10 | 0.80 | 02'0 | 08'0 | -1.00 | 2.00 | 2.30 | 90'0- | 09'0 | | -2.83 | 0.20 | 09'0 | 3.00 | | 8/22 | 0.53 | 1 2 | | -3.72 | | -2.55 | | | -0.01 | | 3/3 | -2.09 | | -0.68 | 1.48 | | | | -0.30 | -2.07 | 28'0 | 09'0- | -1.10 | | 2005 | MTO | | | 24.1 | | | 35.2 | 32.0 | | | 5.50 | 34.5 | 27.64 | | 23.8 | 5.9 | 09'9 | | /ells | ange | | | 16.0 | 20.90 | 19.1 | | | 3.60 | | /ells | ange | | | | 15.3 | | 39.40 | | 29.0 | | 71.30 | 37.40 | | 2010 | MID | | 88.53 | | | | | | | | 2.08 | | 28.51 | 60.54 | | | | | Declines/ Wells | Average Change | 100 | | 16.54 | | 13.64 | | | 0.50 | | Declines/ Wells | Average Change | | | | 20.8 | | 42.7 | | 26.95 | 23.54 | 68.95 | | | 14 | MTQ | 46.8 | 94.38 | 32.1 | 5.4 | 5.0 | 35.9 | 34.2 | 16.0 | 16.8 | 68'6 | 38.2 | | 29'59 | 32.6 | 2.5 | 12.3 | | Dec | Aver | | | 18.81 | | 15.07 | | | 1.57 | | Dec | Aver | 7. 7. | 56.8 | 9.48 | | | | 32.3 | 29.64 | 27.82 | 72.1 | 40.9 | | % | Saturated | 60.48 | 31.46 | | 92.66 | 96.58 | 65.50 | 74.12 | | 88.75 | | 99.29 | | | | | | | 68.81 | | | | 81,89 | 4 4 1 | 86.26 | Y | | | | 86.56 | | | | | | | 58,48 | | | Y | | | | Saturated | 作 | 73 | 41.71 | | 101.5 | 121.3 | 9'.29 | 100.8 | | 114.4 | | 72.1 | | | | | | | Avg % Saturate | | | | 101.87 | | 110.58 | | | | | Avg % Saturate | | | | | 119.19 | | 66.72 | | | | | | | Aq | Thickness | 120.7 | 132.6 | 1 | 106.1 | 125.6 | 103.2 | 136.0 | 7 | 128.9 | | 109.8 | | | | | | | A | | | | 124.4 | | 128.2 | | | | | A | | | | | 127.2 | 1 | 114.1 | | | | | | | 15 | MIQ | 47.7 | 90.89 | 35.2 | 4.6 | 4.30 | 35.6 | 35.2 | 14.0 | 14.5 | 9.95 | 37.7 | 30.5 | 68.5 | 32.4 | 4.60 | 9.30 | | | | 4 | 8.9 | 22.53 | 20.12 | 17.62 | 3.1 | 2.1 | 1.58 | | | | | 57.48 | 8.0 | 8.01 | 11.0 | 47.38 | 32.6 | 31.71 | 27.45 | 72.7 | 42.0 | | Date | | 4/27/2015 | 4/28/2015 | 4/27/2015 | 4/24/2015 | 4/24/2015 | 4/27/2015 | 4/27/2015 | 4/27/2015 | 4/27/2015 | 5/4/2015 | 4/27/2015 | 4/28/2015 | 5/4/2015 | 4/24/2015 | 4/24/2015 | 4/27/2015 | 1 | | 7 | | 3/24/2015 | 4/28/2015 | 4/28/2015 | 4/28/2015 | 3/24/2015 | 3/24/2015 | 4/28/2015 | 1 | | | 1 1 1 | 4/15/2015 | 3/26/2015 | 4/15/2015 | 3/26/2015 | 4/15/2015 | 3/26/2015 | 4/14/2015 | 4/14/2015 | 3/26/2015 | 3/26/2015 | | Longitude | | 904122 | 903917 | | IJ | Ħ | 904216 | | ij | 902024.5 | 902113.23 | 904516 | -90.716231 | 902625.9 | 902705 | 901951 | 902105 | | | | | -91,418333 | 912236.26 | -91.474228 | | | -91.283333 | 911640.42 | | | | | 910428 | 912008 | 912008.5 | 1 | 910515.16 | 911344 | 911347.79 | 911311.86 | 910323.21 | 910416 | | Latitude | | 360718 | 360431 | 360631 | 360832 | 360424 | 361119 | 361356 | 361109 | 361316 | 361110.4 | 361418 | 36.26687 | 360224.1 | 360031 | 360744 | 361203 | | | | | 35.56917 | 353929.4 | 35.62723 | 353720.1 | 35.61952 | 35.85139 | 355106 | | | | | 353550 | 353655 | 353655.1 | 354329 | 355220.4 | 352215 | 352151.8 | 352828.7 | 353329.8 | 354127 | | Station ID | | 17N04E07AD1 | 17N04E28DAA1 | 17N06E15ABC1 | 17N07E01BBA1 | 17N07E28CBA1 | 18N03E24ACA1 | 18N04E04AAC1 | 18N06E23ABB1 | 18N07E05DAB1 | 18N07E20BBA1 | 19N03E33DDD1 | 19N03E26AD | 16N06E03CCC1 | 16N06E21BAA1 | 17N07E03CCC1 | 18N07E17BAB1 | | | | | 11N04W22BBA | 12N04W14DD1 | 12N05W36AAA | 12N04W34CBB1 | 12N04W35CCB | 14N03W14CB2 | 14N03W14DBB1 | | | | 7 77 7 7 7 | 11N01W11CBB1 | 11N03W05CAB1 | 11N03W06DAB1 | 13N03W35AA1 | 14N01W09AAA1 | 09N02W32BBB1 | 09N02W32CBB1 | 10N02W29ABB1 | 11N01W26AAD1 | 12N01W11BCB1 | | County | | Greene | | | | ndependenc | ndependenc | ndependence | ndependenc | ndependenc | ndependenc | ndependenc | | | | | Jackson | 05 - 15
Change | \mathbf{L} | -3.00 | -1.30 | 2/9 | -1.96 | | 4 70 | 5/7- | 4.00 | 1.10 | 0.79 | | -4.58 | | 5/6 | -1.54 | | -5.82 | | -8.55 | -3.80 | 1.50 | -5.60 | 0.40 | -1.78 | | | 5/7 | -3.38 | 0000 | -28.00 | -13.00 | -10.00 | | -20.00 | -13.50 | |-------------------|--------------|--------------|--------------|-----------------|----------------|--|--|--------------|--------------|---------------|--------------|-------------|--------------|---|-----------------|----------------|-------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|---|-----------------|----------------|-------------|-------------|------------|------------|-----------|-------------|-------------| | 10 - 15
Change | | -2.04 | | 9/9 | -1.06 | | 4 4 4 | 4. 4 | 07.0 | -0.90 | -4.77 | -8.33 | -2.99 | | 219 | 4.19 | -4.37 | -2.58 | -4.61 | -5.26 | | | | | | | | 4/4 | 4.21 | | | | | | | | | 14-15
Change | | -0.64 | 1.20 | 6/9 | -0.26 | | 00.0 | 62.0 | 0.34 | | 1.33 | | -0.13 | | 1/4 | 1.96 | | 1.71 | | -1.52 | -0.20 | 0.00 | -0.90 | 3.00 | 6.42 | | | 3/7 | 1.22 | | | | | | | | | 2005
DTW | | 39.2 | 25.80 | /ells | ange | | 00.20 | 40.00 | 40.00 | 17.60 | 17.70 | | 16.0 | | /ells | ange | | 49.60 | | 43.70 | 37.40 | 21.50 | 12.9 | 39.4 | 38.20 | | | /ells | ange | 0 | Z0.0 | 26.5 | 9.30 | | 18.00 | 18.5 | | 2010
DTW | | 40.16 | | Declines/ Wells | Average Change | | 27.70 | 24.79 | 40.90 | 11.93 | 12.14 | 7.62 | 17.59 | | Declines/ Wells | Average Change | 56.4 | 52.84 | 54.17 | 46.99 | | | | | | | | Declines/ Wells | Average Change | | | | | | | | | 14
DTW | | 41.56 | 28.3 | Dec | Ave | | 0000 | 75.67 | 40.04 | | 18.24 | | 20.45 | | Dec | Ave | | 57.13 | | 50.73 | 41.0 | 20.0 | 17.6 | 42.0 | 46.4 | | | Dec | Ave | | | 10 | | | | | | %
Saturated | | | | 95.33 | | | 10.5 | /4.6/ | | | 87.37 | | 82,37 | | 78.20 | | S | 47.82 | | 53.26 | 68.76 | | | | | | 7 | 56.83 | | | | | | | | | | Saturated | | | | Avg % Saturate | | | , L | 85.47 | | | 116,99 | | 96.12 | | Avg % Saturate | | | 50.78 | | 59.55 | 7:06 | | | | | | | Avg % Saturate | | | | | | | | | | Ag
Thickness | | | | A | | | | 114.2 | | | 133.9 | | 116.7 | | A | | | 106.2 | 1000 | 111.8 | 131.9 | | | 1 | | | | A | | | | | | | | | | 15
DTW | | 42.2 | 27.1 | | | | 0000 | 44.7 | 7.14 | 10.3 | 16.91 | 15.95 | 20.58 | | | | 60.77 | 55.42 | 58.78 | 52.25 | 41.2 | 20.0 | 18.5 | 39.0 | 39.98 | | | | | 0 | 48.0 | 39.5 | 19.3 | 45.0 | 38.0 | 32.0 | | <u>Date</u> | 3/24/2015 | 4/15/2015 | 3/26/2015 | | | | 311710015 | 3/1//2015 | 2/42/1/2015 | 3/18/2015 | 4/27/2015 | 3/18/2015 | 3/17/2015 | 1 | | | 4/28/2015 | 4/28/2015 | 4/28/2015 | 4/28/2015 | 4/1/2015 | 4/1/2015 | 4/1/2015 | 4/1/2015 | 4/28/2015 | | 7 | | | 7.500,000,1 | GL07/77/G | 5/22/2015 | 5/22/2015 | 5/22/2015 | 5/22/2015 | 5/22/2015 | | Longitude | -91.399167 | | 911145 | | | | | | 914920.45 | 20 | | ~ | 915647.26 | | | | -90.89333 | 905639.34 | -91.0075 | 910356.33 | 904948 | 910723.26 | 905707 | 905224 | 905449.43 | | | | | 700400 | -91.UU4Z85 | -91.015119 | -90.958172 | _ | - | -90.888488 | | <u>Latitude</u> | 35.68528 | | 355026 | | | | 0 0 7 2 2 7 7 7 | - | 342122.9 | - | - | ~ | | | | | 68856.38 | 355401.9 | 35.89778 | 2 | 360423 | 0 | 360901 | 360758 | 360515.9 | | | | | _ | _ | 34.70426 | 34.67593 | 34.71538 | - | 34.68232 | | Station ID | 12N04W10BBC | 13N01W20AAA1 | 14N02W22BBC1 | | | | Y-000000000000000000000000000000000000 | 03509WZ9CBD1 | 04506W13DCB1 | USSUGWISTCART | 06S05W15BCA1 | 06S07W14BAA | 07S08W06BAA1 | | | | 15N01E09ABD | 15N01E26DDA1 | 15N01E32BAA | 15N01W35CBB1 | 17N02E25CBD1 | 16N01W30DDC1 | 17N01E02BBA1 | 17N02E04DCA1 | 17N02E19CDC1 | | | | | | UTNUTEU4ABB | | | | 01N02E12ABB | 01N02E22CBA | | County | Jackson | Jackson | Jackson | | | | 200 | Jellerson | Jefferson | Jefferson | Jefferson | Jefferson | Jefferson | | | | Lawrence | Lawrence | Lawrence | Lawrence | Lawrence | Lawerence | Lawerence | Lawerence | Lawerence | lan l | | | | | ree | Fee | Fee | Fee | Fee | Fee | | 05 - 15
Change | -5.00 | -6.00 | 4.00 | -8.00 | -2.10 | | -9.00 | -29.00 | -3.75 | | -9.00 | -15.50 | -4.80 | -14.00 | -5.19 | -3.50 | -1.90 | -3.00 | | -7.90 | | | 21/22 | -9.46 | | | 9.34 | -3.45 | -2.59 | -8.63 | -5.10 | -5.47 | -4.76 | -3.85 |
7/8 | -3.06 | | |-------------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|--------------|--------------|-------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|--------------|--|---|-----------------|----------------|--|------|--------------|-------------|-------------|--------------|-------------|--------------|-------------|--------------|-----------------|----------------|--| | 10 - 15
Change | | | | | -0.16 | | | | -1.48 | -5.07 | | | -1.13 | | -3.97 | | 0.61 | | -12.68 | | | | 2/9 | -3.41 | | 9 | 2.40 | -2.50 | -2.09 | -7.34 | 0.69 | -6.14 | -5.54 | -3.84 | 8/9 | -3.04 | | | 14-15
Change | | | | | 4.70 | | | | -0.23 | -0.96 | | | 0.44 | | 62'0 | 1-12-1 | 0.19 | | 4.97 | -0.34 | | | 3/8 | 1.20 | | | | | | -2.44 | | -0.70 | | 1.39 | 2/3 | -0.58 | | | 2005
DTW | 8.0 | 9.0 | 39.0 | 47.0 | 42.5 | | 42.0 | 30.0 | 16.30 | | 62.0 | 44.0 | 47.5 | 45.0 | 45.5 | 25.0 | 11.2 | 4.0 | | 49.30 | | | /ells | ange | | 0 | 0.62 | 33.05 | 29.0 | 37.2 | 36.5 | 40.1 | 25.3 | 26.15 | /ells | ange | | | 2010
DTW | | | | | 44.44 | | 5-1 | | 18.57 | 64.44 | | | 51.17 | | 46.72 | | 13.71 | | 5.42 | | | | Declines/ Wells | Average Change | | 0.00 | 21.77 | 34.0 | 29.5 | 38.49 | 42.29 | 39.43 | 24.52 | 26.16 | Declines/ Wells | Average Change | | | 14
DTW | | | | | 49.3 | | | | 19.82 | 68.55 | | | 52.74 | | 51.48 | | 13.29 | | 23.07 | 56.86 | | | Dec | Aver | | | | | | 43.39 | | 44.87 | | 31.39 | Dec | Aver | | | %
Saturated | | | | | 70.62 | | | | | | | | 67.21 | | 66.47 | | 91.23 | | | | | 1 | 72.88 | 1 | | | | | | 70.01 | | 62.95 | | 78.71 | 73.04 | | | | Saturated | | | | | 107.2 | | | | | | | | 107.2 | | 100.51 | | 136.2 | | | | | | Avg % Saturate | | | | | | | 106.97 | | 77.43 | | 110.9 | Avg % Saturate | |
| | Ag
Thickness | | | | | 151.8 | | | | | | | | 159.5 | | 151.2 | | 149.3 | | | | | | Aı | | | | | | | 152.8 | | 123.0 | | 140.9 | A | | | | 15
WTO | 13.0 | 15.0 | 35.0 | 55.0 | 44.6 | 36.5 | 51.0 | 59.0 | 20.05 | 69.51 | 71.0 | 59.5 | 52.3 | 59.0 | 50.69 | 28.5 | 13.1 | 7.0 | 18.1 | 57.2 | | | | | | 0 | 19.00 | 36.5 | 31.59 | 45.83 | 41.6 | 45.57 | 30.08 | 30.0 | | | | | Date | 5/22/2015 | 5/22/2015 | 5/22/2015 | 5/22/2015 | 4/1/2015 | 5/22/2015 | 5/22/2015 | 5/22/2015 | 4/28/2015 | 4/28/2015 | 5/22/2015 | 5/22/2015 | 4/1/2015 | 5/22/2015 | 4/1/2015 | 5/22/2015 | 4/1/2015 | 5/22/2015 | 4/1/2015 | 4/1/2015 | | | 1 | 7 | | 0.00 | 4/8/2015 | 4/8/2015 | 4/8/2015 | 4/8/2015 | 4/8/2015 | 4/8/2015 | 4/6/2015 | 4/6/2015 | | | | | Longitude | -90.909282 | -90.90956 | -91.001508 | -91.08901 | 905338.75 | -90.839003 | -90.78539 | -90.812891 | 903950.39 | 905947 | -91.030675 | 9 | 905107.32 | -90.81039 | 904926.23 | -90.72011 | 903203.25 | -90.537604 | 904549 | 905820.4 | | | | | | 0000 | -91.516878 | -91.530469 | -91.817422 | 913439.08 | -91.638875 | 914345.83 | -91.6425 | 913907.96 | | | | | <u>Latitude</u> | 14.64.7598 | 34.64.9543 | 34.77593 | 34.73621 | 344807.3 | _ | 34.78982 | 34.7501 | 1 | 345206 | 0 | 34.87759 | 345237.4 | 34.89093 | 344932.7 | 34.87926 | 345148.1 | 34.83896 | _ | 344631.7 | | | | | | - | _ | 33.98364 | | 335553 | | 335821.4 | 33.87444 | 335155.3 | | | | | Station ID | 01N02E33CCB | 01N02E33CBB | 02M01E21BAA | 02N01W34DDC | 02N02E08ADC1 | 02N02E36DDC | 02N03E09DDD | 02N03E29CAD | 02N04E15DAC1 | 03N01E15CCB1 | 03N01E32BCC | 03N02E12CDC | 03N02E13BBA1 | 03N03E02CDD | 03N03E32CAB1 | 03N04E07CBB | 03N05E14DDA1 | 03N05E26ADC | 01N03E35BBA1 | 02N01E23BAA2 | | | 7.1 | | | | U8SU4WU8BBB2 | 08S04W31CBA | 08S06W05DDD | 09S05W14ABC1 | 09S05W17BCB | 09S06W04BCD1 | 10S05W05BCB | 10S05W06DCC1 | | | | | County | Lee | Pee | ее | Fee | ее | Pee | Pee | Pee | ee | ee¬ | eeT | Pee | eeT | ее | ее | ее | ее | Fee | Fee | Pee | | | | | | | LIncoln | | | | 05 - 15 | Change | -3.85 | -4.39 | 1.18 | -2.66 | | | -4.10 | -2.77 | -4.21 | 3.69 | 0.25 | -9.25 | | -6.25 | -4.10 | -3.40 | -5.27 | -2.99 | 9.42 | 5.15 | -0.17 | 2.83 | 4.63 | -5.35 | -3.45 | 15/22 | -1.59 | -5.33 | -6.30 | -3.10 | -3.60 | | 4/4 | 4.58 | | | | |------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|--------------|--------------|-------------|--------------|--------------|-----------------|----------------|--------------|--------------|--------------|--------------|--|-----------------|----------------|---|---|--| | 10 - 15 | Change | | | 0.50 | -2.58 | | -4.59 | -2.29 | -3.23 | 0.93 | | -3.92 | -2.41 | -2.06 | | -4.42 | -3.93 | -4.07 | -0.56 | | | | | | | -2.24 | 12/14 | -2.49 | -3.84 | -5.13 | -3.68 | -4.32 | | 414 | 4.24 | 1 | | | | 14-15 | Change | 3.19 | 0.16 | 0.40 | 0.81 | | -1.52 | 1.65 | 0.81 | 0.98 | | 0.33 | 3.63 | 11.12 | 0.33 | -0.15 | 1.06 | 99'0 | 1.27 | | | |) = | | -0.02 | 0.19 | 4/18 | 02'0 | -2.27 | -0.03 | -1.06 | -1.36 | | 4/4 | -1.18 | | | | | 2005 | DTW | 128.65 | 103.0 | 87.5 | 78.35 | | | 80.75 | 61.94 | 39.2 | 28.80 | 30.17 | 118.1 | | 6.20 | 62.3 | 66.69 | 59.68 | 64.01 | 119.7 | 86.50 | 81.89 | 85.53 | 84.72 | 104.0 | 32.2 | ells | ange | 22.60 | 12.90 | 6.0 | 7.0 | | ells | ange | | 1 | | | 2010 | DTW | | | 86.82 | 78.43 | | 86.59 | 82.56 | 61.48 | 44.34 | | 26.0 | 124.94 | 132.6 | 100 | 61.98 | 66.16 | 88.09 | 66.44 | | | | | 1 2 2 | | 33.41 | Declines/ Wells | Average Change | 24.09 | 14.07 | 5.42 | 6.28 | | Declines/ Wells | Average Change | 1 | | | | 41 | DTW | 135.69 | 107.55 | 86.72 | 81.82 | | 89.66 | 86.5 | 65.52 | 44.39 | | 30.25 | 130.98 | 133.48 | 12.78 | 66.25 | 71.15 | 65.61 | 68.27 | | | | | 1 | 109.33 | 35.84 | Dec | Aver | 25.66 | 19.17 | 8.04 | 9.24 | | Dec | Aver | | | | | % | Saturated | 5.22 | 4.03 | 15.54 | 33.10 | | 21.40 | 28.03 | 43.97 | 63.67 | | 74.10 | 11.07 | | 90.71 | | | | | | Y | | 1 | 10 00 | F-17 | 75.96 | 42.28 | | 81.64 | 89.91 | 93.18 | 92.89 | | 90.13 | | 7 | | | | Saturated | #1 | 7.3 | 4.51 | 15.88 | 40.09 | | 24.82 | 33.05 | 50.79 | 76.09 | | 85.58 | 15.85 | | 121.55 | | | | | | | | | | | 112.65 | Avg % Saturate | | 124.17 | 171 | 124.3 | 138.5 | | Avg % Saturate | | | | | | Ag | Thickness | 139.8 | 111.9 | 102.2 | 121.1 | | 116.0 | 117.9 | 115.5 | 119.5 | | 115.5 | 143.2 | | 134.0 | | | | | 7 | | | 9- | | | 148.3 | A | | 152.1 | 190.2 | 133.4 | 149.1 | | Aı | | | | | | | 7 | 132.5 | 107.39 | 86.32 | 81.01 | 85.75 | 91.18 | 84.85 | 64.71 | 43.41 | 25.11 | 29.92 | 127.35 | 134.65 | 12.45 | 66.4 | 70.09 | 64.95 | 67.0 | 110.28 | 81.35 | 82.06 | 82.7 | 80.09 | 109.35 | 35.65 | | | 27.93 | 19.2 | 9.1 | 10.6 | | | | | | | | Date | | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 2/4/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 2/4/2015 | 5/5/2015 | 2/4/2015 | 5/5/2015 | 5/5/2015 | 2/4/2015 | 2/4/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | | | 4/27/2015 | 4/27/2015 | 4/27/2015 | 4/27/2015 | | | | | | | | Longitude | | 914410.4 | 915043.43 | 915517.01 | 914131.48 | -91,718975 | 914746 | 914912.37 | 915618.98 | 920214.96 | -92.056333 | 920337 | 915113.61 | 915106 | 920322.15 | 914524.67 | 915447 | 915237 | 915149.75 | -91.978036 | -92.006 | -92.005631 | -91.003131 | -92.002839 | 915220.21 | 915121.25 | | | 901312.16 | 900715.17 | 901559.25 | 901028.63 | | | | ĺ | | | | Latitude | | 344103.5 | 344034.6 | 344235.2 | 343459.4 | 34.63883 | 343609 | 343605.6 | 343435.3 | 343926.8 | 34.73233 | 343841 | 344806.5 | 344543 | 344725.3 | 343246.5 | 343430 | 343007 | 343003 | ć | 34.79867 | 34.79835 | | 34.79802 | 345220.2 | 345832.9 | | | 352850.9 | 353217.7 | 354047.1 | 354247.8 | | | | | | | | Station ID | | 01N07W27AAD1 | 01N08W26CCB1 | 01N09W13DAB1 | 01S06W31ABB1 | 01S07W12BCB1 | 01S07W19DDB1 | 01S08W24CDD1 | 01S09W36CCC1 | 01S10W01ACB1 | 01S10W11BBD | 01S10W11CAB1 | 02N08W16ABC1 | 02N08W27DCC | 02N10W23BCA1 | 02S07W10CCB1 | 02S08W06BAA1 | 02S08W28CDC1 | 02S08W34DBB1 | 02N09W02BDB | 02N09W18DAA | 02N09W18DAD2 | 02N09W18DAD3 | 02N09W17CBC | 03N08W21BCC1 | 04N08W15BCB2 | | | 10N08E22ABA2 | 11N09E34BBB1 | 12N08E08BCB1 | 13N09E30CCD1 | | | | | | | | County | | Lonoke | | Mississippi | Mississippi | Mississippi | Mississippi | | | | | | | | 05 - 15
Change | | -7.50 | -3.65 | -4.50 | -7.06 | 0.00 | -3.40 | -2.00 | -1.30 | -8.55 | -6.20 | 2.00 | -0.40 | -9.00 | -7.78 | | -3.20 | 1.00 | -6.90 | -1.65 | -7.10 | 16/19 | 4.06 | -10.00 | -8.00 | -10.90 | -11.50 | -4.90 | -3.00 | -1.30 | -4.45 | -4.95 | -7.73 | -4.45 | | -5.50 | -3.50 | -8.40 | 00.00 | |-------------------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|----------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|----------------|-------------|-------------|-------------|-------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------| | 10 - 15
Change | -5.96 | | -2.90 | 0.21 | -2.12 | | -1.88 | | 0.14 | -9.26 | -6.61 | | -2.70 | | -6.72 | -3.41 | -4.91 | | | -2.72 | -3.05 | 12/14 | -3.53 | | | | | 1.17 | -1.35 | -2.97 | -3.06 | -3.91 | -6.94 | -4.28 | -2.16 | | | | | | 14-15
Change | | 00'0 | 0.34 | 0.29 | | 4.00 | 1.70 | 3.00 | 00'0 | | 0.48 | -1.00 | 0.10 | 00'6- | 2.02 | -0.10 | -0.45 | 4.00 | -4.00 | 0.18 | 0.12 | 5/18 | 60'0 | | | | | 4.80 | 1.38 | | 0.12 | 1.86 | 6.01 | 0.52 | 4.46 | | | | | | 2005
DTW | | 10.5 | 21.50 | 7.00 | | 52.0 | 52.60 | 18.0 | 7.70 | 98.10 | 17.8 | 22.0 | 75.60 | 28.0 | 46.8 | | 18.10 | 38.0 | 11.10 | 45.20 | 37.08 | Vells | ange | 18.0 | 9.0 | 8.6 | 36.0 | 7.20 | 4.90 | 18.40 | 17.05 | 8.15 | 41.37 | 14.30 | | 20.0 | 20.0 | 12.6 | 15.0 | | 2010
DTW | 73.54 | | 22.25 | 11.71 | 51.88 | | 54.12 | | 9.14 | 97.39 | 17.39 | | 73.3 | | 47.86 | 36.87 | 16.39 | | | 44.13 | 41.13 | Declines/ Wells | Average Change | | | | | 13.27 | 6.55 | 16.73 | 18.44 | 9.19 | 42.16 | 14.47 | 10.75 | | | | | | 14
DTW | | 18.0 | 25.49 | 11.79 | | 56.0 | 27.7 | 23.0 | 0.6 | | 24.48 | 19.0 | 76.1 | 28.0 | 9.95 | 40.18 | 20.85 | 41.0 | 14.0 | 47.03 | 44.3 | Dec | Ave | i i | | | | 16.9 | 9.28 | | 21.62 | 14.96 | 55.11 | 19.27 | 17.37 | | | | | | %
Saturated | | 84.99 | 83.00 | 91.19 | | | | 86,25 | 93.02 | To see the see | | | Y | | | | | | | | | 87,19 | Y | | | | | 91.76 | 91.01 | | 82.26 | 88,99 | | | | | Y 1 | | | | Saturated | | 101.9 | 122.75 | 119 | | | | 125.5 | 119.9 | | | | | | | | | | | | | Avg % Saturate | | | | | | 134.8 | 80 | | 2.66 | 105.9 | | | | | | | | | A <u>q</u>
Thickness | | 119.9 | 147.9 | 130.5 | | | | 145.5 | 128.9 | | | | | | | | | | | | | A | | | | 1 | | 146.9 | 87.9 | | 121.2 | 119.0 | | | | | | | | | 15
DTW | 79.5 | 18.0 | 25.15 | 11.5 | 54.0 | 52.0 | 56.0 | 20.0 | 9.0 | 106.65 | 24.0 | 20.0 | 76.0 | 37.0 | 54.58 | 40.28 | 21.3 | 37.0 | 18.0 | 46.85 | 44.18 | | | 28.0 | 17.0 | 19.5 | 47.5 | 12.1 | 7.90 | 19.70 | 21.5 | 13.1 | 49.1 | 18.75 | 12.91 | 25.5 | 23.5 | 21.0 | 15.0 | | Date | 5/15/2015 | 5/15/2015 | 3/31/2015 | 3/31/2015 | 4/27/2015 | 5/15/2015 | 3/31/2015 | 5/15/2015 | 3/31/2015 | 3/31/2015 | 3/31/2015 | 5/15/2015 | 3/31/2015 | 5/15/2015 | 3/26/2015 | 3/31/2015 | 3/26/2015 | 5/15/2015 | 5/15/2015 | 4/27/2015 | 3/31/2015 | | | 5/4/2015 | 5/4/2015 | 5/4/2015 | 5/4/2015 | 4/2/2015 | 4/2/2015 | 4/2/2015 | 4/2/2015 | 4/2/2015 | 4/2/2015 | 4/2/2015 | 7/1/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | | Longitude | -91.354925 | 911743 | 910849.2 | 911456.1 | -91.095 | 910814 | 910912.46 |
910408 | 911100.58 | 912648.52 | 910340.54 | | 912316.73 | 911745 | 910722.83 | 911447.2 | 911547.12 | 911004 | 911311 | 911149.73 | 911031.9 | | | -91.016229 | -90.753167 | -90.776223 | -90.924004 | 905434.06 | 904001.09 | -90.858314 | 904709.93 | 903918 | 904151 | 910058.18 | 904621.48 | -90.912337 | -90.903447 | -90.7815 | -90.950113 | | Latitude | 84.5939694 | | 343617.8 | 343612.7 | 34.69417 | 344624 | 344645.2 | 343305 | 343209 | 343959.5 | 343610.9 | 343615 | 343905.9 | 344455 | 345201.2 | 344958.3 | 345026.7 | 345929 | 345957 | 345540.2 | 344242.3 | | | 34.59149 | 34.63732 | 34.62815 | | 343718.7 | - | | 342734.5 | 342732 | 343802 | 342916.4 | 343110 | | 34,47343 | 34,47455 | 34.37732 | | Station ID | 01N03W20BBA | 01N03W23BAC1 | 01S01W18DCD1 | 01S02W20BBB1 | 01N01W15DBC | 02N01W19ADD1 | 02N01W19BBA1 | 02S01W01BCD1 | 02S02W11DAC1 | 01N04W33BBB2 | 01S01W13CDD1 | 01S01W16DB | 01S04W01BAB1 | 02N03W35BCA1 | 03N01W20ABA1 | 03N02W31ADC1 | 03N03W36AAA1 | 04N02W01BCC1 | 04N02W05BBB1 | 04N02W27CDD3 | 01N02W12CBC1 | | | 01S01E20DDB | 01S03E02ADD | 01S03E10ABB | 01S02E32BBC | 01S02E09CBB1 | 02S04E27AAC1 | 03S02E35DDA | 03S03E04DAA1 | 03S04E02CAA1 | 01S04E05DCD1 | 02S01E28CCB1 | 02S03E15ACD1 | 02S02E29DDD | 02S02E33ACC | 02S03E34BCD | 04S01E01AAD | | County | Monroe | | Phillips | 05 - 15
Change | 135 | 1 50 | -6.00 | -4.20 | 4 -4 4 | 18/19 | -5.51 | 200 | -10.30 | -8.35 | -14.00 | -6.00 | -17.00 | -5.00 | -6.00 | | -18.10 | -5.80 | -10.00 | | 4.00 | -1.00 | -1.00 | - | -7.87 | -7.00 | -29.50 | -11.00 | -6.00 | -8.15 | | -7.20 | -7.00 | 1.30 | -0.20 | -3.00 | 1.17 | -8.00 | |-------------------|-------------|-------------|-------------|-------------|--------|-----------------|----------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|--------------|-------------|--------------|--------------|-------------|--------------|-------------| | 10 - 15
Change | 2 4 A | | | | | 6/8 | -2.96 | | -5.69 | -1.80 | | | | | | -5.70 | | -3.79 | | -5.70 | | | | | | | -23.47 | | | -4.51 | | -9.75 | | 5.78 | 90'0 | | -0.54 | | | 14-15
Change | Oliginac | | | | | 2/0 | 2.74 | | -0.69 | 9.17 | | | | | | 0.91 | 10000 | -0.12 | 1.00 | -1.04 | | | | | 5.39 | 4.0 | -9.23 | | 1000 | -0.41 | 10.00 | 8.32 | | -0.06 | -0.55 | 1 | -0.95 | | | 2005
NT/I | 0 Z | 400 | 9.0 | 12.0 | | /ells | ange | 0.70 | 90.40 | 72.65 | 76.0 | 74.0 | 102.0 | 105.0 | 114.0 | | 128.9 | 117.30 | 97.00 | | 18.0 | 29.0 | 14.0 | | 90.0 | 87.0 | 105.50 | 100.00 | 106.00 | 103.35 | | 110.30 | 00'9 | 12.22 | 13.60 | 21.00 | 58.25 | 72.0 | | 2010 | 000 | 08.8 | | | | Declines/ Wells | Average Change | | 95.01 | 79.20 | | | | | | 101.9 | | 119.3 | 1 | 125 | | | | | | | 111.5 | | | 107 | | 107.8 | | 16.7 | 13.86 | 1.4 | 56.54 | | | 14
MTM | | | | | | Dec | Ave | | 100.01 | 90.17 | | | | | | 108.5 | | 122.98 | | 129.67 | | | | - | 103.26 | 7 | 125.77 | | | 111.09 | | 125.82 | | 10.86 | 13.25 | 1.77 | 56.13 | Į. | | %
Saturated | Salalarea | | | | | 86.88 | K 500 | | 33.05 | 44.60 | | | | | | | | | | | 5 | | | 1 - 1 - 1 | 32.41 | | 9.52 | | 7 | Y | | | | | 87,14 | 5.7 | 53.74 | | | Saturated | | | | | | Avg % Saturate | | | 49.7 | 65.2 | | | | | | | | | | | | | | | 46.93 | | 14.2 | | | | | | | | 93.5 | | 66.32 | | | Ad
Thickness | III CUITCO | | | | | A | | | 150.4 | 146.2 | | | | 7 | 9 | 5 | 5 | 7 | 7 - 7 | 6 | | | | | 144.8 | | 149.2 | | | | 1 | 1 | | | 107.3 | 4.4.4.4 | 123.4 | | | 15
WTO | 13.05 | 5.03 | 15.0 | 16.2 | | | | 0.001 | 100.7 | 81.0 | 0.06 | 80.0 | 119.0 | 110.0 | 120.0 | 107.59 | 147.0 | 123.1 | 107.0 | 130.71 | 14.0 | 30.0 | 15.0 | 87.0 | 97.87 | 94.0 | 135.0 | 111.0 | 112.0 | 111.5 | 140.0 | 117.5 | 13.0 | 10.92 | 13.8 | 24.0 | 57.08 | 80.0 | | Date | | 5/5/2015 | 5/5/2015 | 5/5/2015 | | | | 510610015 | 4/23/2015 | 5/13/2015 | 5/26/2015 | 5/26/2015 | 5/26/2015 | 5/26/2015 | 5/26/2015 | 5/13/2015 | 5/26/2015 | 4/23/2015 | 5/26/2015 | 4/23/2015 | 5/26/2015 | 5/26/2015 | 5/26/2015 | 5/26/2015 | 4/23/2015 | 5/26/2015 | 4/21/2015 | 5/26/2015 | 5/26/2015 | 4/23/2015 | 5/26/2015 | 4/23/2015 | 5/26/2015 | 4/23/2015 | 4/23/2015 | 5/26/2015 | 4/16/2015 | 5/26/2015 | | Longitude | 00 801783 | -90.691263 | -90.977057 | -90.848166 | | | | ON ARRASS | 905813.38 | | -90.992064 | -91.014842 | | -90.905117 | (0 | 905231.3 | -90.731222 | 904404.93 | 3.50 | | | -90.357878 | -90.60872 | -91.004287 | 905653.32 | -90.966508 | 905034.19 | -90.927896 | -90.872894 | 904456.54 | -90.787336 | 904852.42 | -90.537051 | 902646 | | 19.1 | 910141.25 | -90.969286 | | <u>Latitude</u> | _ | 34.32330 | | 34.37233 | | | | 35 53/B | 1 | 352921.9 | 35.46286 | | - | | | 352725.8 | 35.49953 | 352947.2 | | | | - | 35.58064 | | 353340.3 | | | 35.56452 | | 353545.7 | | | 35.55508 | 353224 | 353435 | | / | 35.65619 | | Station ID | OJCOJECZOV. | 04501E23CCA | 04S01E14CDD | 04S02E01DBB | | | | AAACOHLONOL | 10N01E14CC1 | 10N01E16CCB1 | 10N01E33ACB | 10N01E32CBB | 10N02E15CAA | 10N02E20BAB | 10N02E26BBD | 10N02E34BBB1 | 10N03E13BCB | 10N03E14DAB1 | 10N03E19BCB | 10N03E35CDD1 | 10N04E35BBA | 10N07E28CBB | 11N04E13DDA | 11N01E17DDC1 | 11N01E26AA1 | 11N01E34AAA | 11N02E26AAB1 | 11N02E30BBB | 11N02E34CBA | 11N03E10DDA1 | 11N03E17AAB | 11N03E18BAB1 | 11N05E26BDB | 11N06E34BBC1 | 11N07E18CAB1 | 11N07E28CBB | 12N01E07CDA1 | 12N01E22DAB | | County | Ohilling | Phillips | Phillips | Phillips | | | | Doincott | Poinsett | 05 - 15
Change | -15.00 | | -13.00 | -8.00 | | -10.00 | -8.00 | -6.65 | -5.00 | -0.24 | -2.00 | -3.31 | -9.52 | -4.00 | | 36/39 | -7.20 | | -2.27 | -33.35 | -0.80 | -0.55 | 29.80 | -2.05 | 0.13 | -1.10 | -3.14 | -4.58 | -8.11 | -11.59 | -0.79 | -4.10 | -4.35 | -2.40 | -3.38 | -1.82 | -2.86 | -3.40 | 18/20 | -3.04 | |-------------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|--------------|------------|--------------|-------------|-------------|--------------|--------------|---|-----------------|----------------|---|--------------|--------------|--------------|--------------|-------------|-------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|---------------|--------------|--------------|-----------------|----------------| | 10 - 15
Change | | -3.72 | | | -8.65 | | 111 | 90'2- | | -3.13 | | -1.18 | -4.42 | 0.62 | | 15/18 | 4.59 | | -0.23 | | 0.63 | -0.02 | 7.97 | 0.57 | 1.93 | 1.41 | 09.0 | -3.05 | -6.35 | -8.72 | 1.67 | -6.08 | -8.91 | -1.21 | -2.15 | 16.56 | -3.30 | -1.78 | 11/19 | -0.55 | | 14-15
Change | | | | | -2.55 | 1 | | -2:35 | | 3.02 | | 92'0- | 71.14 | 3.27 | 1 | 12/18 | 0.57 | | 1.84 | -4.86 | 1.05 | 0.10 | | | 0.54 | 1.36 | | 90'0 | -4.02 | -9.40 | 0.46 | 1 6 200 | | 5.36 | 0.43 | 0.88 | -0.26 | 0.10 | 4/15 | -0.42 | | 2005
DTW | 111.0 | | 111.0 | 92.0 | | 86.0 | 0.9 | 4.55 | 101.0 | 5.6 | 8.0 | 14.3 | 76.30 | 103.0 | | /ells | ange | | 116.8 | 76.95 | 96.6 | 108.25 | 126.6 | 115.45 | 117.97 | 82.20 | 107.57 | 86.74 | 117.6 | 122.2 | 117.74 | 1. 1 | 20.45 | 75.4 | 0.97 | 0.09 | 9.98 | 94.9 | Vells | ange | | 2010
DTW | j | 115.6 | | | 101.1 | | | 4.14 | | 2.71 | | 16.45 | 81.4 | 107.6 | | Declines/ Wells | Average Change | | 118.8 | | 98.03 | 108.8 | 104.8 | 118.1 | 119.8 | 84.71 | 111.3 | 88.27 | 119.4 | 125.1 | 120.2 | 60.22 | 15.89 | 76.59 | 77.23 | 78.38 | 86.16 | 96.52 | Declines/ Wells | Average Change | | 14
DTW | | | | | 107.15 | | 1 1 | 88.88 | | 8.86 | | 16.87 | 84.68 | 110.27 | | Dec | Aver | | 120.91 | 105.44 | 98.45 | 108.9 | | | 118.38 | 84.66 | | 91.38 | 121.69 | 124.39 | 118.99 | | | 83.16 | 79.81 | 62.7 | 89.2 | 98.4 | Dec | Aver | | %
Saturated | | | | | | | | | A | 94.96 | | 86.37 | | | | 54.71 | | , | 23.53 | 22.92 | 29.57 | | | | 24.94 | 44,47 | | 38.17 | 16.64 | 9.60 | 23.28 | | | 37.96 | | 47.21 | 47.59 | 44.62 | 32.50 | | | Saturated | | | | | | | | | | 109.96 | | 111.67 | | | | Avg % Saturate | | | 36,63 | 32.8 | 40.9 | | | | 39.16 | 66.7 | | 56.38 | 25.09 | 14.21 | 35.97 | | | 47.6 | | 55.28 | 81.24 | 79.2 | Avg % Saturate | | | Ag
Thickness | | | 1 | 71 | fr | 1 | 1 | | | 115.8 | | 129.3 | | | | Av | | |
155.7 | 143.1 | 138.3 | | | | 157.0 | 150.0 | 100 | 147.7 | 150.8 | 148.0 | 154.5 | | · | 125.4 | | 117.1 | 170.7 | 177.5 | Av | | | 15
WTO | 126.0 | 119.32 | 124.0 | 100.0 | 109.7 | 0.96 | 14.0 | 11.2 | 106.0 | 5.84 | 10.0 | 17.63 | 85.82 | 107.0 | Ì | | | | 119.07 | 110.3 | 97.4 | 108.8 | 8.96 | 117.5 | 117.84 | 83.3 | 110.71 | 91.32 | 125.71 | 133.79 | 118.53 | 66.3 | 24.8 | 77.8 | 79.38 | 61.82 | 89.46 | 98.3 | | | | Date | 5/26/2015 | 5/13/2015 | 5/26/2015 | 5/26/2015 | 5/13/2015 | 5/26/2015 | 5/26/2015 | 4/23/2015 | 5/26/2015 | 4/23/2015 | 5/26/2015 | 4/23/2015 | 4/16/2015 | 5/26/2015 | | | | | 4/28/2015 | 4/28/2015 | 3/25/2015 | 3/25/2015 | 3/25/2015 | 3/25/2015 | 3/25/2015 | 3/26/2015 | 3/25/2015 | 2/4/2015 | 3/26/2015 | 3/25/2015 | 3/26/2015 | 3/25/2015 | 3/25/2015 | 3/25/2015 | 3/25/2015 | 4/28/2015 | 3/25/2015 | 3/25/2015 | | | | Longitude | -90.829004 | | -90.875117 | -90.724835 | 904318.72 | -90.686778 | -90.559274 | | -90.731501 | 902059.69 | -90.339545 | | 910013.21 | 904600.16 | | | | | 914049.08 | 913707.61 | 912629.73 | | -91.575469 | | 913613 | - | 99 | 912937 | 1 | 913959.44 | | | -91.459186 | 913440.92 | 913405.83 | 914017.96 | 734 | 914544.88 | | | | Latitude | | 35.64194 | | 35.69841 | 353749.4 | 35.68147 | 35.67758 | | 35.62925 | 354202 | 35.67841 | 353740 | 12 | 354158 | | | | | 344353 | 344014.9 | 343522.7 | 343722 | _ | - | 343826 | 344436.4 | - | 344659 | | 344809.5 | | - | 34.98064 | 345842.6 | 345513.7 | 345933.8 | | 345700.5 | | | | Station ID | 12N02E25DCC | 12N02E26DAD | 12N02E34CCC |
12N03E01CBD | 12N03E36ACB1 | 12N04E08CDA | 12N05E16ABA | 12N05E34ABA1 | 12N03E35AD | 12N07E04BAA1 | 12N07E10CBB | 12N07E25DC1 | 11N01E17DDD1 | 12N03E04DAD1 | | | | | 01N06W05CCB1 | 01N06W26CDD1 | 01S04W28BDB1 | 01S05W14BBC1 | 01S05W31DDA | 01N06W29DDD | 01S06W12BAB1 | 02N04W32CCB1 | 02S05W21CBB | 02N05W24BCA3 | 02N05W29DDB2 | 02N06W17ABB1 | 02N06W24CAA1 | 03S05W03BDD2 | 04S04W07ADC | 04N05W07CDC1 | 04N05W31DDC1 | 04N06VV05CCC1 | 04N07W03DCB1 | 04N07W28BBA1 | | | | County | Poinsett | | | | Prairie | | | 05 - 15
Change | | | | - | -12.00 | -6.80 | | -0.52 | 5.50 | -6.66 | | | | Sec. (8) | -3.17 | | -5.60 | 170 | 2/9 | 4.18 | | -4.82 | -3.62 | -4.36 | -5.85 | -6.20 | -8.10 | -8.03 | -2.20 | -1.44 | -1.05 | -4.70 | -9.10 | -6.60 | -2.20 | | 14/14 | 4.88 | | |-------------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|--------------|--------------|-------------|-------------|---|-------------|-------------|--------------|-------|-----------------|----------------|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|-----------------|----------------|--| | 10 - 15
Change | | | | | | -3.97 | | -6.57 | | -8.75 | | | | 2 | -4.91 | | -4.88 | | 5/5 | -5.82 | | -2.12 | -4.11 | -7.39 | -3.96 | -2.12 | -5.10 | -8.69 | 7.26 | -3.25 | -0.99 | -4.89 | -5.63 | -3.49 | 0.44 | 77 17 | 12/14 | -3.15 | | | 14-15
Change | | | | | | -0.64 | | | - | -8.17 | | | | | -2.61 | | 92'1- | 1 2 | 4/4 | -3.29 | 1222 | 1.77 | 0.22 | | -0.58 | 4.32 | -0.37 | -2.30 | 9.60 | -1.35 | 0.04 | 1.94 | -0.80 | 28.0 | 0.01 | | 5/13 | 1.03 | | | 2005
DTW | | | | | 23.0 | 36.02 | | 11.30 | 14.50 | 10.40 | | | | | 10.0 | | 14.90 | | /ells | ange | | 6'89 | 71.55 | 44.3 | 9.65 | 829 | 66.5 | 54.0 | 95.5 | 31.86 | 25.1 | 9'69 | 71.9 | 59.2 | 34.9 | | /ells | ange | | | 2010
DTW | | | 7 | | | 38.85 | | 5.25 | | 8.31 | | | | | 8.26 | | 15.62 | | Declines/ Wells | Average Change | | 61.6 | 71.06 | 41.27 | 61.49 | 69.88 | 69.5 | 53.34 | 105 | 30.05 | 25.16 | 69.41 | 75.37 | 62.31 | 37.54 | | Declines/ Wells | Average Change | | | 14
DTW | | | | | | 42.18 | | | | 8.89 | | | | | 10.56 | | 18.75 | | Dec | Ave | | 65.49 | 75.39 | | 64.87 | 76.32 | 74.23 | 59.73 | 107.3 | 31.95 | 26.19 | 76.24 | 80.2 | 29.99 | 37.11 | | Dec | Ave | | | %
Saturated | | | | | | 71.75 | | | | 87.67 | | | | A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 90.18 | | | | 85.96 | 5 Land | | 57.23 | 52.18 | | 57.44 | 49.79 | 48.83 | 58.87 | 49.27 | | 81.56 | 47.82 | | 56.13 | | | 55.00 | | | | Saturated
ft | | | | | | 108.78 | | | | 121.34 | | | | | 120,93 | | | | Avg % Saturate | | | 85.28 | 82.03 | | 88.35 | 71.4 | 71.2 | 88.77 | 94.9 | | 115.65 | 68.1 | | 84.2 | | | Avg % Saturate | | | | Ag
Thickness | | | | | | 151.6 | | | | 138.4 | | | | | 134.1 | | | | A | | | 149.0 | 157.2 | 1 | 153.8 | 143.4 | 145.8 | 150.8 | 192.6 | | 141.8 | 142.4 | | 150.0 | | | A | | | | 15
DTW | 18.0 | 17.0 | 14.5 | 16.5 | 35.0 | 42.82 | 36.0 | 11.82 | 9.0 | 17.06 | 21.5 | 7.5 | 6.5 | 18.0 | 13.17 | 20.0 | 20.5 | | | | | 63.72 | 75.17 | 48.66 | 65.45 | 72.0 | 74.6 | 62.03 | 7.76 | 33.3 | 26.15 | 74.3 | 81.0 | 65.8 | 37.1 | | | | | | <u>Date</u> | 4/2/2015 | 4/2/2015 | 4/2/2015 | 4/2/2015 | 4/2/2015 | 4/28/2015 | 4/2/2015 | 4/28/2015 | 4/2/2015 | 4/28/2015 | 4/2/2015 | 4/2/2015 | 4/2/2015 | 4/2/2015 | 4/28/2015 | 4/2/2015 | 4/28/2015 | 10000 | | 1 | | 4/8/2015 | 4/28/2015 | 4/8/2015 | 4/28/2015 | 4/8/2015 | 4/8/2015 | 4/8/2015 | 4/8/2015 | 4/8/2015 | 4/8/2015 | 4/28/2015 | 4/8/2015 | 4/28/2015 | 4/8/2015 | | | | | | Longitude | 90.981233 | -90.953454 | -90.979722 | -91 | -90.899008 | 905104.7 | -90.855673 | -90.865961 | -90.847062 | 904811.39 | -90.803174 | -90.82 | -90.861667 | -90.785673 | 904537.97 | -90.788173 | 905729.13 | | | | | 910801 | 910633.55 | -90.872059 | 905633 | 905942.41 | 905928.78 | 905437.16 | 904800.83 | 903630.35 | 902656.87 | 905941.6 | 905002.71 | 905247.31 | 902841.2 | | | | | | <u>Latitude</u> | 36.18173 | | 36.20806 | 36.22889 | 36.20118 | 361045.8 | 36.17896 | 1 | 36.27228 | 362424.2 | 36.40673 | 36.37556 | 36.34694 | 36.38979 | 362113.5 | 36.34173 | 360942.7 | | | | | 345735 | 345535.3 | 34.98009 | 345701 | 350302.6 | 350135.7 | 350156.9 | 350214.3 | 350127.6 | 350025.6 | 350552.3 | 350812.6 | 350841.9 | 350747.1 | | | | | | Station ID | 18N01E21CD1 | 18N01E11CCC | 18N01E16ABA | 18N02E02CBC | 18N02E17CBB | 18N02E22DCD1 | 18N02E27BA1 | 19N02E09DCA | 19N02E22DAB | 20N02E01ADD1 | 20N02E01ADD2 | 20N02E13CBB | 20N02E28DAD | 20N03E07DAA | 20N03E28BA1 | 20N03E30DDA | 18N01E34AAC1 | | | | | 04N01W17CBC1 | 04N01W28CDD1 | 04N02E03DDD3 | 04N02E19BBB1 | 05N01E15BCB1 | 05N01E27BBA1 | 05N02E20ADC1 | 05N03E20AAA2 | 05N05E19DCA1 | 05N06E34CAB1 | 06N01E33ACA2 | 06N02E13DCA1 | 06N02E15BDD1 | 06N06E20ABB2 | | | | | | County | Randolph | | | | St. Francis | | | | | 05 - 15
Change | -0.11 | 22.85 | 1.00 | -0.46 | | -1.20 | 0.15 | 10.23 | 2.95 | | 3/8 | 4.43 | | -2.06 | -4.00 | 0.55 | | 0.00 | -1.55 | 0.70 | | -0.90 | -0.01 | -4.80 | 0.67 | -3.48 | 0.63 | | -1.90 | -4.10 | -3.70 | -5.50 | 1.60 | -6.80 | | 12/18 | -1.93 | | 300/361 | 83.10% | 4.22 | |-------------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----|-----------------|----------------|-------|-------------|-------------|-----|-----------------|----------------|---|-----------------|------------------------------|------------------| | 10 - 15
Change | -0.30 | 10.73 | 2.87 | | 2.97 | -4.13 | 0.82 | 5.90 | -0.42 | 2.7 | 3/8 | 2.31 | | -2.96 | | 0.40 | 1.48 | -0.27 | -1.80 | | -7.45 | -4.67 | 0.64 | 1000 | -0.80 | -5.42 | -3.53 | | -2.67 | 2000 | -6.29 | | | | | 10/13 | -2.56 | | 201/244 | 82.37% | -2.84 | | 14-15
Change | 60 0- | | -0.02 | -0.59 | 96'0 | 0.83 | 1 7 2 | 6.86 | 0.70 | | 3/7 | 1.24 | 10000 | -0.06 | 1 7 7 1 | 0.70 | -0.62 | 0.22 | -1.37 | -0.50 | 0.50 | -0.58 | 2.14 | -0.30 | -0.02 | -0.99 | -0.85 | -0.70 | -0.46 | 1.00 | -0.75 | -0.50 | -0.50 | -0.50 | | 15/20 | -0.21 | | 148/317 | 46.68% | 0.28 | | 2005
DTW | 82 | 34.25 | 10.5 | 6.58 | | 24.8 | 1.40 | 14.13 | 13.2 | | Vells | ange | | 9.6 | 8.5 | 3.93 | | 4.2 | 1.44 | 3.2 | | 9.1 | 43.1 | 25.5 | 3.75 | 14.08 | 21.5 | 1 2 4 7 | 18.9 | 75.4 | 11.0 | 44.0 | 11.1 | 15.7 | | Vells | ange | | | | | | 2010
DTW | 804 | 22.13 | 12.37 | | 12.64 | 21.87 | 2.07 | 9.80 | 9.83 | | Declines/ Wells | Average Change | | 8.7 | | 3.78 | 68.75 | 3.93 | 1.19 | | 59.55 | 5.33 | 43.75 | | 2.28 | 12.14 | 17.34 | | 18.13 | | 8.41 | | | | | Declines/ Wells | Average Change | | /ells | Decline | lange | | 14
DTW | 8 22 | | 9.48 | 6.45 | 10.63 | 26.83 | | 10.76 | 10.95 | | oeq | Ave | | 11.6 | | 4.08 | 66.65 | 4.42 | 1.62 | 2.0 | 67.5 | 9.42 | 45.25 | 30.0 | 3.06 | 16.57 | 20.02 | 22.0 | 20.34 | 80.5 | 13.95 | 49.0 | 9.0 | 22.0 | | Dec | Ave | | Declined/ Wells | Total Percent Decline | Total Avg Change | | %
Saturated | 92.79 | | 92.53 | 94.89 | 93.18 | 78.35 | 76'86 | | | | 89.65 | | | 86.70 | 4.30 | 96.20 | 51.08 | 95.56 | 96.63 | | | 90.87 | | | | 86.63 | | | 84.12 | | | Y | | | | 84.12 | | Y | Dec | Total | Tota | | Saturated | 106.89 | | 117.7 | 130.76 | 132.03 | 94.1 | 120.15 | | | | Avg % Saturate | | | 76.04 | | 85.62 | 70.23 | 90.5 | 85.81 | | | 99.5 | | | | 113.74 | | | 110.2 | | | | | | 4.4 | Avg % Saturate | | | | | | | Ag
Thickness | 1152 | | 127.2 | 137.8 | 141.7 | 120.1 | 121.4 | | | / | Aı | | | 87.7 | 1 2 2 2 1 | 89.0 | 137.5 | 94.7 | 88.8 | | | 109.5 | 135.4 | | 1000 | 131.3 | | 11.0 | 131.0 | | | | | | | Aı | 1 | 1 | | | | | 15
WTO | T | 11.4 | 9.5 | 7.04 | 29.6 | 26.00 | 1.25 | 3.90 | 10.25 | | | | 3 | 11.66 | 12.5 | 3.38 | 67.27 | 4.2 | 2.99 | 2.5 | 29 | 10.0 | 43.11 | 30.3 | 3.08 | 17.56 | 20.87 | 22.7 | 20.8 | 79.5 | 14.7 | 49.5 | 9.5 | 22.5 | | | | | | | | | Date | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | 5/5/2015 | | | | | 4/7/2015 | 5/8/2015 | 4/7/2015 | 4/7/2015 | 4/7/2015 | 4/7/2015 | 5/12/2015 | 5/8/2015 | 5/13/2015 | 4/7/2015 | 5/8/2015 | 4/7/2015 | 4/7/2015 | 4/7/2015 | 5/8/2015 | 4/7/2015 | 5/8/2015 | 4/7/2015 | 5/12/2015 | 5/12/2015 | 5/8/2015 | | 1 | | Y | | | | | Longitude | 914436 | -91.652753 | 914634.73 | 914824.37 | 914931.17 | 913406.19 | -91,571378 | 914441.48 | 914151.92 | | | | | 911819.87 | -91.258737 | 912210.78 | 910354 | 911807.41 | 912144 | 912428 | 910626 | 912025.42 | 910747 | 911107 | 911411 | 911919 | 912028 | 911845 | 911921 | 910331 | 911356.19 | 911419 | 912103 | 911936 | | | | | | | | | <u>Latitude</u> | 350400 2 | - | 350822.5 | 350907.7 | 350639.7 | 351136.6 | 35.27102 | 350446.9 | 350851.3 | | | | | | - | 350426.8 | 350944 | 350903.1 | 350623 | 350807 | 351541 | 351335 | 352028 | 351711 | 351611 | 352128 | 351655 | 352310 | 352258 | 350244 | 350207.8 | 350802 | 351152 | 352205 | | | | | | | | | Station ID | 05N07W10CCC1 | 06N06W04BAA | 06N07W17DCC1 | 06N08W13ABA1 | 06N08W26DDB1 | 07N05W32BAB1 | 08N05W32CBC1 | 05N07W09AAA1 | 06N06W18BBC1 | | | | | 04N03W03AB1 | 05N03W25DDB | 05N04W12DBA1 | 06N01W11AAB1 | 06N03W15BAB1 | 06N03W31BCB1 | 06N04W22BDA1 | 07N01W04ACB1 | 07N03W19AAA1 | 08N01W06DDD1 | 08N02W27DDB1 | 08N02W31DDD1 | 08N03W04BBB1 | 08N03W31AAD1 | 09N03W28ABB1 | 09N03W29AAD1 | 05N01W13CDC1 | 05N02W20DCB1 | 06N02W19AAA1 | 07N03W31BBA1 | 09N03W32ACA1 | | | | | | | | | County | White | | | | Woodruff | | | | 1 1 1 | | | ## Appendix B **Sparta/Memphis Aquifer Water Level Monitoring
Data** | | | | | | | | | | L | | | |----------|--------------|----------|------------------|-------------|----------|----------|----------------------------|----------|-----------------|----------|---------| | County | Station ID | Latitude | <u>longitude</u> | <u>Date</u> | 2015 DTW | 2014 DTW | 2014 DTW 2010 DTW 2005 DTW | 2005 DTW | <u>Δ'14-'15</u> | ∆'10-'15 | △105-15 | | Arkansas | 03S03W18CCC2 | 342553 | 912251 | 2/4/2015 | 112.71 | | | | | | | | Arkansas | 02S04W06CDB1 | 343311.5 | 912849 | 5/29/2015 | 154.59 | 174.55 | 147.90 | 154.5 | 19.96 | (69.9) | (0.09) | | Arkansas | 02S04W23DAA1 | 343044.2 | 912355 | 5/29/2015 | 137.45 | 150.65 | 153.5 | 143.6 | 13.20 | 16.05 | 6.15 | | Arkansas | 02S04W33BBB1 | 342922.1 | 912703 | 5/29/2015 | 153.2 | | 165.0 | 150.0 | | 11.77 | (3.23) | | Arkansas | 02S05W16CBB1 | 343143.6 | 913319 | 5/26/2015 | 165.86 | 180.85 | 165.5 | 168.1 | 14.99 | (0.36) | 2.24 | | Arkansas | 02S05W35AAB1 | 342930 | 913035 | 5/29/2015 | 182.23 | | | 171.1 | | | (11.13) | | Arkansas | 02S05W34ABC1 | 342925 | 913147 | 5/31/2015 | 179.1 | 185.28 | 168.8 | 174.6 | 6.18 | (10.30) | (4.50) | | Arkansas | 03S04W02CCB1 | 342747.6 | 912458 | 5/31/2015 | 145.78 | 155.16 | 142.4 | 144.1 | 9.38 | (3.38) | (1.68) | | Arkansas | 03S04W26CDA1 | 342421 | 912438 | 6/3/2015 | 134.69 | 145.85 | | 137.8 | 11.16 | | 3.11 | | Arkansas | 03S04W33BAA1 | 342407 | 912639 | 6/3/2015 | 150.76 | 164.5 | | | 13.74 | | | | Arkansas | 03S05W02AAB1 | 342842.2 | 913034 | 5/29/2015 | 175.2 | 176.07 | | 165.6 | 0.87 | | (09.60) | | Arkansas | 03S05W13BDC1 | 342631.2 | 913005 | 5/31/2015 | 170.81 | 178.6 | 148.0 | 171.7 | 62.7 | (22.81) | 0.89 | | Arkansas | 03S05W18CAB1 | 342629.4 | 913525 | 6/2/2015 | 157.06 | 172.25 | 153.9 | 156.3 | 15.19 | (3.16) | (0.76) | | Arkansas | 03S05W28DAB1 | 342447.2 | 913240 | 6/2/2015 | 162.8 | 176.76 | | 167.9 | 13.96 | | 5.10 | | Arkansas | 03S06W21ACB1 | 342554.1 | 913927 | 6/3/2015 | 150.9 | 161.8 | 150.2 | | 10.90 | (02.0) | | | Arkansas | 03S06W30BBD1 | 342515.5 | 914216 | 6/3/2015 | 141.59 | 159.5 | 156.4 | 161.3 | 17.91 | 14.81 | 19.71 | | Arkansas | 04S01W04CBD1 | 342225.4 | 910808 | 6/3/2015 | 109.49 | 112.43 | | 107.5 | 2.94 | | (1.99) | | Arkansas | 04S01W28BAA1 | 341927 | 910748 | 6/3/2015 | 102.35 | 106.64 | | | 4.29 | | | | Arkansas | 04S04W11BCC1 | 342157 | 912502 | 6/3/2015 | 147.97 | 154.25 | 143.2 | 151.1 | 6.28 | (4.77) | 3.13 | | Arkansas | 04S04W19CBB1 | 342003.7 | 912929 | 6/2/2015 | 151.94 | 164.08 | | 151.8 | 12.14 | | (0.14) | | Arkansas | 04S05W05ACC1 | 342302.7 | 913413 | 6/2/2015 | 150.71 | | 148.4 | 151.1 | | (2.31) | 0.39 | | Arkansas | 04S05W01BAA1 | 342322.2 | 912956 | 6/2/2015 | 167.96 | 181.67 | 162.3 | | 13.71 | (2.66) | | | Arkansas | 04S05W31DDA1 | 341819.3 | 913448 | 6/2/2015 | 33.91 | | | 24.62 | | | (9.29) | | Arkansas | 04S05W36DCC1 | 341752 | 913004 | 6/2/2015 | 154.0 | | 153.7 | 153.9 | | (0.30) | (0.10) | | Arkansas | 04S05W15AAA1 | 342132.2 | 913133 | 6/2/2015 | 159.49 | 179.42 | 155.75 | 159.2 | 19.93 | (3.74) | (0.29) | | Arkansas | 05S04W26ACA1 | 341458.3 | 913424 | 6/3/2015 | 132.01 | | 132.0 | 119.8 | | (0.01) | (12.21) | | Arkansas | 05S01W17BAA1 | 341550.7 | 910745 | 6/3/2015 | 90.26 | 92.58 | | 80.68 | 2.32 | | (1.18) | | Arkansas | 05S05W26CDD1 | 341323.8 | 913120 | 6/3/2015 | 34.8 | 36.17 | 34.75 | 30.39 | 1.37 | (0.02) | (4.41) | | Arkansas | 05S05W36DAA1 | 341245.1 | 912947 | 6/3/2015 | 137.24 | 145.75 | 140.0 | 133.9 | 8.51 | 2.76 | (3.34) | | Arkansas | 06S02W06ABB1 | 341227.9 | 911620 | 6/4/2015 | 114.26 | 119.17 | | 102.3 | 4.91 | | (11.96) | | Arkansas | 06S02W17ADA1 | 341022.7 | 911453 | 6/4/2015 | 110.05 | 113.45 | | 104.8 | 3.40 | | (5.25) | | Arkansas | 06S02W22CDB1 | 340904.1 | 911331 | 6/4/2015 | 107.7 | 111 | 107.40 | 98.12 | 3.30 | (0:30) | (9.58) | | Arkansas | 06S03W27BAA1 | 340859.2 | 912009 | 6/3/2015 | 115.31 | 120.2 | 115.10 | 112.5 | 4.89 | (0.21) | (2.81) | | Δ'05-'15 | (3.51) | (5.89) | (3.29) | 23/31 | (2.11) | (4 08) | (and) | (15.93) | 1.29 | | 4.70 | | 0.53 | | 2/5 | (2.35) | | | | | | 8.87 | 5.86 | 0.35 | | 0/3 | 5.03 | | |------------|--------------|--------------|--------------|----------------|----------------|--------------|---------|--------------|--------------|--------------|--------------|------------------|--------------|------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|--| | A'10-'15 | (0.99) | (1.62) | (3.59) | 19/23 | (1.11) | (0.11) | () | (10.43) | | | (0.16) | | 5.17 | 0.00 | 3/4 | (1.81) | 34.97 | | (1.20) | (6.43) | | 12.17 | 12.76 | (0:30) | 9.11 | 3/7 | 8.73 | | | ∆'14'15 | | | | 0/28 | 9.35 | 1 22 | 77: | (16.55) | (3.69) | 5.77 | (3.21) | 92'0 | 2.25 | | 3/7 | (2.45) | 3.77 | | 0.20 | (12.74) | | 1.65 | (3.65) | 0.36 | 4.30 | 2/7 | (0.87) | | | 2005 DTW | 95.88 | 98.23 | 122.8 | s | Эe | 17 97 | 2 | 186.4 | 166.8 | | 201.0 | | 74.26 | | s | ge e | | | | | | 156.4 | 170.9 | 24.75 | | S | ale el | | | 2010 DTW | 98.40 | 102.5 | 122.50 | Decline/ Wells | Average Change | 19 94 | 2 | 191.90 | | | 196.14 | | 78.90 | | Decline/ Wells | Average Change | 129.40 | | 56.15 | 191.30 | | 159.70 | 177.80 | 24.10 | 117.40 | Decline/ Wells | Average Change | | | 2014 DTW | | | | De | Ave | 23.27 | 1.01 | 185.78 | 161.82 | 184.75 | 193.09 | 100.17 | 75.98 | | ۵ | Ave | 98.2 | | 57.55 | 184.99 | | 149.18 | 161.39 | 24.76 | 112.59 | De | Ave | | | 2015 DTW | 99.39 | 104.12 | 126.09 | | | 22.05 | 25:32 | 202.33 | 165.51 | 178.98 | 196.3 | 99.41 | 73.73 | | | | 94.43 | 63.08 | 57.35 | 197.73 | 163.02 | 147.53 | 165.04 | 24.4 | 108.29 | | | | | Date | 6/4/2016 | 6/4/2015 | 6/4/2015 | | | 6/11/2015 | 0 | 6/26/2015 | 6/3/2015 | | 6/3/2015 | 4/1/2015 | 6/2/2015 | | | | 6/25/2015 | 1/14/2015 | 4/1/2015 | 6/25/2015 | 6/2/2015 | 6/3/2015 | 3/27/2015 | 3/27/2015 | 3/27/2015 | | | | | longitude | 911448 | 911411 | 914248 | | | 920116 | 010 | 920444 | 920417 | 920407 | 921607 | 921621 | 922052 | | | | 922928 | 922226 | 922226 | 922742 | 922551 | 922802 | 922404 | 922807 | 922821 | | | | | Latitude | 300031.1 | 340339.7 | 340701.9 | | | 331333 7 | 200000 | 333711.2 | 333647.1 | 333625 | 333453.7 | 332142 | 331839.3 | | | | 334630.3 | 333846 | 333233 | 333226.8 | 333145.3 | 333206.7 | 333040.1 | 332411 | 332230 | | | | | Station ID | 08S02W09BCC1 | 07S02W28ABA1 | 07S03W06ABC1 | | | 17S09W15ACC1 | | 12S09W31CCB1 | 13S09W06ACB2 | 13S09W06DBD1 | 13S11W17BCD1 | 5S11W31DDD1 Hild | 16S12W21CAA1 | | | | 11S14W12CAC3 | 12S12W30ADD1 | 13S12W31DAA1 | 13S13W32CDA1 | 14S13W03CAB1 | 14S13W05BBD1 | 14S13W12CCB1 | 15S13W20BDC1 | 15S13W32BCA1 | | | | | County | Arkansas | Arkansas | Arkansas | | | Δshlev | See les | Bradley | Bradley | Bradley | Bradley | Bradley 1 | Bradley | | | | Calhoun | | | | ∆'05-'15 | 32.51 | 7.70 | 2.27 | (1.41) | 0.85 | (06.6) | 0.79 | 2/7 | 4.69 | | | (0.99) | (18.71) | | (2.84) | (62.40) | 17.25 | 5.05 | 6.05 | 66.59 | 22.33 | 11.51 | 7.94 | 0.29 | 4.27 | (4.93) | | 21.72 | 18.71 | | | |-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|-----|-----|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------| | ∆'10-'15 | | | 2.12 | 7.14 | 3.85 | | 5.49 | 0/4 | 4.65 | | | (1.29) | (16.35) | | (17,44) | (49.10) | 13.35 | 13.35 | (3:32) | | 12.83 | 13.11 | | | | (7.73) | (40.39) | 19.22 | 12.19 | | | | △14-15 | | | 0.46 | (0.04) | 1.58 | | 0.26 | 1/4 | 0.57 | | 2.5 | (0.14) | (9.12) | (0.27) | (9.02) | | 3.62 | 3.09 | (8.96) | | 2.52 | 1.39 | (4.23) | 1.70 | 0.62 | 6.23 | (3.12) | 9.51 | 9.80 | (0.01) | 3.33 | | 2005 DTW | 207.2 | 208.4 | 161.9 | 162.6 | 154.8 | 203.8 | 119.0 | S | ge | | | 216.10 | 198.30 | | 146.90 | 247.20 | 272.90 | 269.10 | 221.70 | 210.90 | 269.80 | 278.20 | 203.30 | 81.62 | 137.00 | 136.10 | | 273.40 | 277.50 | | | | | | | 161.75 | 171.15 | 157.80 | | 123.70 | Decline/ Wells | Average Change | | | 215.80 | 200.66 | | 132.30 | 260.50 | 269.00 | 277.40 | 212.30 | | 260.30 | 279.80 | | | | 133.30 | 280.01 | 270.90 | 270.98 | | | | 2014 DTW 2010 DTW | | | 160.09 | 163.97 | 155.53 | | 118.47 | De | Ave | | | 216.95 | 207.89 | 263.14 | 140.72 | | 259.27 | 267.14 | 206.69 | | 249.99 | 268.08 | 191.13 | 83.03 | 133.35 | 147.26 | 317.28 | 261.19 | 268.59 | 132.89 | 261.22 | | 2015 DTW | 174.69 | 200.7 | 159.63 | 164.01 | 153.95 | 213.7 | 118.21 | | | | | 217.09 | 217.01 | 263.41 | 149.74 | 309.6 | 255.65 | 264.05 | 215.65 | 144.31 | 247.47 | 266.69 | 195.36 | 81.33 | 132.73 | 141.03 | 320.4 | 251.68 | 258.79 | 132.9 | 257.89 | | Date | 6/10/2015 | 6/10/2015 | 6/10/2015 | 6/10/2015 | 6/10/2015 | 6/10/2015 | 6/10/2015 | | | | | 1/21/2015 | 1/21/2015 | 7/16/2015 | 1/21/2015 | 4/29/2015 | 4/29/2015 | 4/29/2015 | 4/28/2015 | 5/28/2015 | 4/28/2015 | 4/2/2015 | 5/28/2015 | 5/28/2015 | 5/28/2015 | 5/28/2015 | 1/20/2015 | 5/28/2015 | 5/28/2015 | 1/20/2015 | 4/1/2015 | | longitude | 921134 | 921120 | 921251 | 920021 | 915957 | 921423 | 921743 | | | | | 931215 | 931517 | 931816 | 932228 | 98.3088 | 930329 | 930066 | 090066 | 931758 | 931424 | 931449 | 931820 | 932304 | 932210 | 932137 | 931249 | 931227 | 931016 | 931545 | 931156 | | Latitude | 335729 | 335728.5 | 335622.7 | 334917.9 | 334757.9 | 334543 | 335133 | | | | | 332453.4 | 332049.4 | 331943 | 331947.6 | 331538.1 | 331537 | 331516.8 | 331406.1 | 331613.4 | 331743.1 | 331608.6 | 331608 | 331516.6 | 331522 | 331520.7 | 331142.6 | 331114.8 | 331054.4 | 330822 | 330558 | | Station ID | 09S11W01CDA1 | 09S11W01DDA2 | 09S11W11CDB1 | 10S09W23CDC1 | 10S09W35ACD1 | 11S11W16AAB1 | 10S12W12BDD1 | | | 3.5 | E | 15S20W20CCB1 | 16S21W14CBB1 |
16S21W20CDC1 | 16S22W22CCD1 | 17S19W17ACA1 | 17S19W15ABD1 | 17S19W18CBD1 | 17S19W30ABB1 | 17S21W08DCA1 | 17S21W01BBC1 | 521W11DCC2 Magn | 17S21W17BAB1 | 17S22W21ABD1 | 17S22W22ABB1 | 17S22W23BBB1 | 18S20W06DDC1 | 18S20W08CBC1 | 18S20W10CAA1 | 18S21W26CCC1 | S20W08DAB1 Emer | | County | Cleveland | | | | Columbia B | Columbia | 0.92 4.42 | | + | (0.67) (2.44) | , , , | (3.75) (3.60) |--------------|--------------|--------------|---------------|--------------|----------------|-------------------------|----------------------------------|--|--|--|--|---|---|--|--|--|--|--|--|--|--|---|--|--
--|--|--|--|--|--|--
--| | (0.87) | (0.56) | (1.14) | 100 | (1.06) | (3.85) | (3.85) | (3.85)
(1.72)
0.87 | (1.06)
(3.85)
(1.72)
0.87
(0.98) | (1.06)
(3.85)
(1.72)
0.87
(0.98) | (1.06)
(3.85)
(1.72)
0.87
(0.98) | (1.06)
(3.85)
(1.72)
0.87
(0.98)
(0.91) | (1.00)
(3.85)
(1.72)
0.87
(0.98)
(0.91) | (1.06)
(3.85)
(1.72)
0.87
(0.98)
(0.91) | (1.06)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(0.12) | (1.00)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.12)
(0.12)
(1.11) | (1.06)
(3.85)
(1.72)
0.87
(0.91)
(0.91)
(0.12)
(1.11)
(1.11)
(1.11) | (1.06)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(0.12)
(1.11)
(1.11)
(1.11)
(1.301) | (1.06)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(1.11)
(1.11)
(1.11)
(1.3.01)
(2.47)
(0.63) | (1.06)
(3.85)
(1.72)
0.87
(0.91)
(0.91)
(0.91)
(0.12)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(0.63)
(0.65) | (1.00)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(0.91)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.1 | (1.06)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(0.91)
(1.11)
(1.11)
(1.11)
(1.301)
(0.63)
(0.65)
5/6
(3.55) | (1.00)
(3.85)
(1.72)
0.87
(0.91)
(0.91)
(0.91)
(0.091)
(0.091)
(0.091)
(0.091)
(0.091)
(0.091)
(0.091)
(0.092)
(0.093)
(0.093)
(0.093)
(0.093)
(0.093) | (1.00)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(1.11)
(1.11)
(1.11)
(1.11)
(2.47)
(0.63)
(0.63)
(0.65)
5/6
(3.56) | (1.06)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(0.91)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.12)
(1.12)
(1.13)
(1.13)
(1.13)
(1.13)
(1.14)
(1.15)
(1.15)
(1.15)
(1.15)
(1.16)
(1.17)
(1.17)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.18)
(1.1 |
(1.00)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.12)
(1.11)
(1.12)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(1.1 | (1.00)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(1.11)
(1.11)
(1.3.01)
(0.65)
(0.65)
5/6
(3.55) | (1.00)
(3.85)
(1.72)
(0.98)
(0.91)
(0.91)
(0.91)
(0.91)
(0.91)
(0.91)
(0.63)
(0.63)
(0.63)
(0.65)
5/6
(3.55) | (1.00)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(0.63)
(0.65)
5/6
(0.55)
5/6 | (1.06)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(1.11)
(1.11)
(2.47)
(0.63)
(0.65)
5/6
(3.56) | (1.00)
(3.85)
(1.72)
(0.987
(0.987)
(0.91)
(0.91)
(0.63)
(0.63)
(0.65)
5/6
(3.56)
(3.56) | (1.00)
(3.85)
(1.72)
0.87
(0.98)
(0.91)
(0.91)
(1.11)
(1.11)
(1.11)
(1.11)
(1.11)
(0.63)
(0.63)
(0.65)
5/6
(3.55) | (1.00)
(3.85)
(1.72)
(0.98)
(0.91)
(0.91)
(0.91)
(0.91)
(0.63)
(0.63)
(0.63)
(0.63)
(0.63)
(0.65)
5/6
(3.56)
(3.56) | | 265.90 | 470.00 | 173.20 | | 43.52 | 43.52 | 43.52
52.45
54.03 | 43.52
52.45
54.03
50.46 | 43.52
52.45
54.03
50.46
52.07 | 43.52
52.45
54.03
50.46
52.07
107.10 | 43.52
52.45
54.03
50.46
52.07
107.10 | | 43.52
52.45
54.03
50.46
52.07
107.10 | 43.52
52.45
54.03
50.46
52.07
107.10
Inge | 43.52
52.45
54.03
50.46
52.07
107.10
alls
mge | 43.52
52.45
54.03
50.46
52.07
107.10
Inge | 43.52
52.45
54.03
50.46
52.07
107.10
Inge | 43.52
52.45
54.03
50.46
52.07
107.10
Inge
Inge
60.31
10.76 | 43.52
52.45
54.03
50.46
52.07
107.10
Inge
Inge
60.31
10.76
118.20 | 43.52
52.45
54.03
50.46
50.46
52.07
107.10
mge
mge
60.31
118.20
21.08 | 43.52
52.45
52.45
50.46
50.46
52.07
107.10
sils
10.76
11.8.20
21.08 | 43.52
52.45
52.45
50.46
50.46
52.07
107.10
107.6
118.20
21.08
11s | 43.52
52.45
52.45
50.46
50.46
52.07
107.10
mge
118.20
21.08
mge | 43.52
52.45
52.45
50.46
50.46
52.07
107.10
107.10
60.31
118.20
21.08
118
118.20
21.08 | 43.52
52.45
56.46
50.46
50.46
52.07
107.10
107.6
118.20
21.08
118
118.20
21.08
118
118.20
21.08
118
8110 | 43.52
52.45
52.45
50.46
50.46
52.07
107.10
alls
nge
118.20
21.08
alls
nge
22.42
22.53
8.10 | 43.52
52.45
52.45
50.46
50.46
50.46
52.07
107.10
60.31
10.76
118.20
21.08
118
nge | 43.52
52.45
52.45
50.46
50.46
50.46
52.07
107.10
107.10
60.31
10.76
118.20
21.08
318
mge
118.20
21.08
318
8.10
61.57 | 43.52
52.45
52.45
50.46
50.46
50.46
52.07
107.10
107.10
55.27
60.31
118.20
21.08
118
nge | 43.52
52.45
56.46
50.46
50.46
50.46
107.10
107.10
118.20
21.08
118
118
118.20
21.08
118
118.20
21.08
118
118.20
21.08
118 | 43.52
52.45
52.45
50.46
50.46
50.46
52.07
107.10
10.76
118.20
21.08
118
118
118
118
119
118
119
119
119
11 | 43.52
52.45
52.45
50.46
50.46
50.46
52.07
107.10
107.10
60.31
118.20
21.08
118
118.20
21.08
8.10
61.57
61.57 | 43.52
52.45
56.46
50.46
50.46
50.46
52.07
107.10
107.6
118.20
21.08
118
nge | | 262.40 | 206.50 | 1/2.10 | 00 00 | 45.29 | 45.29
52.30 | 52.30
54.10 | 52.30
54.10
54.10 | 45.23
52.30
54.10
45.85
104.27 | 45.23
52.30
54.10
45.85
104.27 | 45.23
52.30
54.10
45.85
104.27 | 45.23
52.30
54.10
45.85
104.27
106.00 | 45.23
52.30
54.10
45.85
104.27
106.00
Decline/ Well | 49.29
52.30
54.10
45.85
104.27
106.00
7
Decline/ Wells | 45.23
52.30
45.85
104.27
106.00
Decline/ Well
werage Chan | 45.29
52.30
54.10
45.85
106.00
Decline/ Well
verage Chan
58.20
60.90 | 45.29
52.30
54.10
45.85
106.00
Decline/ Well
verage Chan
58.20
60.90 | 45.29
52.30
54.10
45.85
104.27
106.00
Decline/ Well
werage Chan
(60.90
60.90
111.10 | 45.29
52.30
54.10
45.85
106.00
106.00
verage Chan
verage Chan
11.10
11.10
117.55 | 52.30
54.10
45.85
104.27
106.00
Decline/ Well
verage Chan
58.20
60.90
11.10
11.10 | 45.23
52.30
54.10
45.85
104.27
106.00
Decline/ Wells
verage Chang
58.20
60.90
117.55
22.20
Decline/ Wells | 49.29 52.30 745.85 745.85 704.27 706.00 706.00 706.00 707. | 52.30
54.10
45.85
104.27
106.00
Decline/ Well
verage
Chan
117.55
22.20
Decline/ Well
717.55
22.20 | 52.30
54.10
45.85
104.27
106.00
Decline/ Well
verage Chan
117.55
22.20
Decline/ Well
verage Chan
verage Chan
22.20 | 52.30
54.10
45.85
104.27
106.00
Decline/ Well
verage Chan
117.55
22.20
Decline/ Well
verage Chan
22.20
Decline/ Well
22.20 | 52.30
54.10
45.85
104.27
106.00
106.00
60.90
60.90
60.90
117.55
22.20
Decline/ Well
verage Chan
verage Chan
46.00 | 52.30
52.30
54.10
45.85
106.00
106.00
60.90
60.90
60.90
117.55
22.20
Decline/ Well
verage Chan
verage Chan
46.00 | 52.30
54.10
45.85
104.27
106.00
106.00
60.90
60.90
60.90
117.55
22.20
Decline/ Well
verage Chan
verage Chan
46.00 | 52.30
52.30
54.10
45.85
106.00
106.00
58.20
60.90
117.55
22.20
Decline/ Well
verage Chan
verage Chan
46.00 | 45.29 52.30 54.10 45.85 104.27 106.00 106.00 117.55 22.20 Decline/ Wells verage Chang | 49.29 52.30 54.10 45.85 104.27 104.27 106.00 106.00 117.55 117.55 122.20 22.20 22.20 22.20 22.20 22.20 22.20 23.6 28.20 46.00 Average Change | 52.30
54.10
45.85
104.27
106.00
106.00
117.55
22.20
60.90
117.55
22.20
28.20
28.20
46.00
46.00 | 52.30
52.30
54.10
104.27
106.00
106.00
117.55
22.20
Decline/ Well
verage Chan
28.20
28.20
28.20
28.20
28.20
46.00 | | 200.01 | | | 77.9 | 2 | 52.2 | 52.2 | 52.2
52.46
44.03 | 52.2
52.46
44.03
51.53 | 52.2
52.46
44.03
51.53
106.59 | 52.2
52.46
44.03
51.53
106.59 | | 52.2
52.46
44.03
51.53
106.59 | 52.2
52.46
44.03
51.53
106.59
Av | 52.2
52.46
44.03
51.53
106.59
D
Av | 52.46
52.46
44.03
51.53
106.59
Av
62.56 | 52.2
52.46
44.03
51.53
106.59
D
Av
62.56
52.07 | 52.2
52.46
44.03
51.53
106.59
D
Av
62.56
52.07
11.9 | 52.2
52.46
44.03
51.53
106.59
Av
62.56
52.07
118.59
118.59 | 52.2
52.46
44.03
51.53
106.59
Av
62.56
52.07
12.9
118.59
25.66 | 52.2
52.46
44.03
51.53
106.59
Av
62.56
52.07
118.59
25.66 | 52.46
52.46
44.03
51.53
106.59
106.59
62.56
52.07
12.9
118.59
25.66 | 52.46
44.03
52.46
44.03
51.53
106.59
Av
62.56
52.07
12.9
118.59
25.66
Av | 52.2
52.46
44.03
52.46
44.03
51.53
106.59
72.07
12.9
118.59
25.66
D | 52.46
44.03
52.46
44.03
51.53
106.59
62.56
52.07
12.9
118.59
25.66
D | 52.2
52.46
44.03
51.53
106.59
Av
62.56
52.07
118.59
25.66
Av
Av | 52.46
44.03
52.46
44.03
51.53
106.59
118.59
118.59
25.66
Av
Av | 52.2
52.46
44.03
51.53
106.59
106.59
72.07
12.9
118.59
25.66
Av
Av | 52.46
44.03
52.46
44.03
51.53
106.59
11.8.59
11.8.59
25.66
Av
Av | 52.46
44.03
52.46
44.03
51.53
106.59
72.07
12.9
118.59
25.66
D | 52.46
44.03
52.46
44.03
51.53
106.59
72.07
12.9
118.59
25.66
Av
Av | 52.46
44.03
52.46
44.03
51.53
106.59
72.07
12.9
118.59
25.66
25.66
D | 52.2
52.46
44.03
51.53
106.59
106.59
72.07
12.9
118.59
25.66
D
Av
Av | | | - 1 | | | | 56.05 | | 3 3 7 | 110010015 | _ | + | - | 1/12/2015 | - | - | 031031 | - | \dashv | - | | | - | 932722 | | 100 | 330030 4 | 330239.1 | 330517.2 | 330643.9 | 330609.4 | 0,00000 | 330604.9 | 330604.9 | 330554
330138.4 | 330604.9
330554
330138.4
330109.2 | 330604.9
330554
330138.4
330109.2 | 330604.9
330554
330138.4
330109.2 | 330604.9
330554
330138.4
330109.2 | 330604.9
330554
330138.4
330109.2 | 330604.9
330554
330138.4
330109.2
354928.9 | 330604.9
330138.4
330109.2
354928.9
354836.9 | 330604.9
330138.4
330109.2
354928.9
354836.9
354750.8 | 330604.9
330138.4
330109.2
354928.9
354836.9
354750.8 | 330604.9
330554
330138.4
330109.2
354836.9
354836.9
354836.9
354836.9
355506 | 330138.4
330138.4
330109.2
354928.9
354750.8
355506
355359.8 | 330138.4
330138.4
330109.2
354928.9
354836.9
354750.8
355359.8 | 330109.9
330138.4
330109.2
354928.9
354750.8
355506
355359.8 | 330604.9
330138.4
330109.2
354928.9
354750.8
355506
3553504 | 330604.9
330554
330138.4
330109.2
354928.9
354836.9
355506
35536
355359.8
3553504
35.23004 | 330604.9
330138.4
330138.4
330109.2
354928.9
354750.8
355506
355506
3553004
35.23004
35.14612 | 330604.9
330554
330138.4
330109.2
354928.9
354750.8
355560
355359.8
35.23004
35.16612
35.14714
35.12912 | 330604.9
330554
330138.4
330109.2
354928.9
354836.9
355506
355506
355359.8
35.23004
35.16612
35.14714
35.12912 | 선물하다. [선생] 선생 [스타] 하고 한다. [하고 문자] 선생님이 [스타] 하고 [스타] (하고 [스타] (하고 [스타] (하고 [스타] (하고 [스타] (하고 [스타] | [연구] [[[[[[[[[[[[[[[[[[[| 선생님들은 선생님들은 이번 하고 있는데 얼마나 하는데 살아 있다. 그리고 나는 나는 사람들은 사람들은 사람들이 되었다. 그리고 있다. | 선생님들 선생님선이 그리 반의 하고 그의 선생님이 살아 받아 있는 않는다. 그가 그리 모임 전에 보인 전에 되어 됐어요. 그 없고 있다. | 어머니의 어제 어제 그리 하다 보고 있다. 어제 아이 살이 되지 않아나는 아이들이 모든 보면 보면 보면 되어 되게 됐어요? 나는 나는 사람이 있다. | 어느 그게 어어 선생님들이 반대 하고 있다. 그리 없어 전에 집에 있어 있다면 가입니다. 그리 모양 없어 보기 있어 되어 됐어요? 그리고 있는데 있다. | | 19S20W09CBD1 | 19S20W34BDD1 | 19S21W16DBB1 | 19S23W10ABD1 | 19S23W11CDA2 | | 19S23W11DDB1 | 19S23W11DDB1
19S23W14BAB1 | 19S23W11DDB1
19S23W14BAB1
20S22W03DCC1 | 19S23W11DDB1
19S23W14BAB1
20S22W03DCC1
20S22W11ACD1 | 19S23W11DDB1
19S23W14BAB1
20S22W03DCC1
20S22W11ACD1 | 19SZ3W11DDB1
19SZ3W14BAB1
20SZ2W03DCC1
20SZ2W11ACD1 | 19S23W11DDB1
19S23W14BAB1
20S22W03DCC1
20S22W11ACD1 | 19SZ3W11DDB1
19SZ3W14BAB1
20SZ2W03DCC1
20SZ2W11ACD1 | 19S23W11DDB1
19S23W14BAB1
20S22W03DCC1
20S22W11ACD1
14N04E22CBD1 | | | | | | | | | | | | | | 19S.23W11DUB1
19S.23W14BAB1
20S.22W03DCC1
20S.22W11ACD1
14N04E22CBD1
14N05E36CBC1
15N04E20ADB1
15N04E20ADB1
15N05E29DBB1
06N05E29DBB1
06N09E03BCC1
06N09E03BCC1
06N09E23AAB1
06N09E23AAB1 | 19S.23W11DUB1
19S.23W14BAB1
20S.22W03DCC1
20S.22W11ACD1
14N04E22CBD1
14N05E36CBC1
15N04E20ADB1
15N04E20ADB1
15N05E29DBB1
06N07E01DAD2
06N07E01DAD2
06N09E03BCC1
06N09E23AAB1
06N09E23AAB1 | 19S23W11DUB1
19S23W14BAB1
20S22W03DCC1
20S22W11ACD1
14N04E22CBD1
14N04E22BDD1
14N05E36CBC1
15N04E20ADB1
15N05E29DBB1
06N09E08DCC1
06N09E08DCC1
06N09E08DCC1
06N09E08BC2 | 19S.23W11DUB1
19S.23W14BAB1
20S.22W03DCC1
20S.22W11ACD1
14N04E22CBD1
14N05E36CBC1
15N04E20ADB1
15N05E29DBB1
15N05E29DBB1
06N09E03DCC1
06N09E03BCC1
06N09E03BB1 near He | 19S23W11DDB1 19S23W14BAB1 20S22W03DCC1 20S22W11ACD1 14N04E28DBD1 14N04E28DBD1 14N05E36CBC1 15N05E29DBB1 15N05E29DBB1 06N07E01DAD2 06N09E08DCC1 06N09E08DCC1 06N09E14BAC1 06N09E23AAB1 06N09E23BB1 near He | | | + | | Columbia | Columbia | Ц | Columbia | Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Craighead Crittenden Crittenden Crittenden Crittenden Crittenden | Columbia Col | Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Craighead Crittenden Crittenden Crittenden Crittenden Crittenden | Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Craighead Crittenden Crittenden Crittenden Crittenden Crittenden Crittenden | Columbia Col | Columbia Columbia Columbia Columbia Columbia Columbia Craighead Cr | | ∆'05-'15 | (3.50) | (0.14) | 2/4 | 0.56 | (4.40) | | 8.17 | (0.01) | (2.04) | (9.76) | (0.11) | (0.50) | | 0.53 | 8/9 | (1.02) | | | | | | | 2.12 | 4.84 | | (17.78) | 5.28 | 23.61 | |-----------------|--------------|--------------|----------------|----------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|--------------|--------------|--------------|--------------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------| | ∆'10-'15 | (7.40) | (0.24) | 2/4 | (0.11) | | 2.04 | (1.16) | (2.18) | (2.10) | | 96'0 | 0.30 | (2.81) | (2.96) | 8/9 | (66.0) | | (2.47) | 1.82 | (0.74) | 2/3 | (0.46) | 1.52 | 5.91 | (2.01) | 2.89 | 1.61 | 4.41 | | <u>∆'14-'15</u> | 2.78 | | 0/3 | 2.97 | | 0.47 | | (0.08) | | (3.12) | 1.76 | (0.10) | 1.51 | 2.65 | 3/7 | 0.44 | | | | | | | 2.42 | 2.17 | 0.55 | | 1.71 | 9.31 | | 2005 DTW | 130.20 | 265.70 | S | ge | 109.5 | | 35.63 | 32.77 | 71.36 | 78.66 | 6.03 | 151.5 | | 75.78 | S | ge | 102.9 | 71.24 | 69.02 | 95.39 | S | ge | 131.0 | 9.87 | | 59.43 | 16.97 | 209.7 | | 2010 DTW | 126.30 | 265.60 | Decline/ Wells | Average Change | | 27.57 | 26.30 | 30.60 | 71.30 | | 7.10 | 152.30 | 55.08 | 72.29 | Decline/ Wells | Average Change | | 71.65 | 70.15 | 81.50 | Decline/ Wells | Average Change | 130.40 | 10.94 | 83.74 | 80.10 | 13.30 | 190.50 | | 2014 DTW | 136.48 | | ۵ | Ave | | 26 | 200 | 32.7 | | 85.3 | 7.9 | 151.9 | 59.4 | 77.9 | ŏ | Ave | | | | | Ŏ | Ave | 131.3 | 7.2 | 86.3 | | 13.4 | 195.4 | | 2015 DTW | 133.7 | 265.84 | | | 113.9 |
25.53 | 27.46 | 32.78 | 73.4 | 88.42 | 6.14 | 152.0 | 68.79 | 75.25 | | | 102.7 | 74.12 | 68.33 | 82.24 | | | 128.88 | 5.03 | 85.75 | 77.21 | 11.69 | 186.09 | | Date | 6/18/2015 | 6/18/2015 | | | 6/25/2015 | 1/14/2015 | 6/13/2015 | 6/17/2015 | 6/17/2015 | 6/17/2015 | 6/17/2015 | 6/4/2015 | 1/14/2015 | 6/13/2015 | | | 6/2/2015 | 6/2/2015 | 6/2/2015 | 6/3/2015 | | | 6/3/2015 | 6/5/2015 | 4/17/2015 | 6/2/2015 | 6/2/2015 | 6/3/2015 | | longitude | 904518 | 904118 | | | 933334 | 923752 | 923730 | 924307 | 922413 | 922919 | 924701 | 922458 | 923632 | 924120 | | | 912905 | 9116.23 | 911711 | 912259 | | | 922106 | 923447 | 923456 | 922650 | 923827 | 921413 | | Latitude | 352403.8 | 352231.9 | | | 340425.3 | 340402 | 335858.8 | 335936.8 | 335309.3 | 332753.6 | 332605.5 | 334829.5 | 335201 | 335119.5 | | | 335034.4 | 334750.2 | 334615.8 | 333748.6 | | | 342845.7 | 342600.5 | 342405 | 341810 | 341923.8 | 341340.8 | | Station ID | 09N03E22AAB2 | 09N04E30DCA1 | | | 07S14W31AAA1 | 07S15W33DAC1 | 08S15W34BDC1 | 08S16W27DDD1 | 09S13W35CCD | 09S14W01BDC1 | 09S16W19CAA1 | 10S13W34ACA2 | 10S15W11DBB1 | 10S15W18BCC1 | | | 10S04W11CBC1 | 10S02W26CCC2 | 11S02W03CCA1 | 12S03W26CBB1 | | | 03S13W12AAA1 | 03S15W26DAA1 | 04S15W02DAC1 | 05S13W07ADB1 | 05S15W05ABD1 | 06S11W05ACD1 | | County | Cross | Cross | | | Dallas | | Desha | Desha | Desha | Desha | | | Grant | Grant | Grant | Grant | Grant | Grant | | 5 <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u> | 3.15 | | 1/5 | 3.54 | | 4.90 | 1.12 | (3.28) | (12.87) | 20.70 | 20.89 | 12 15 | 21.11 | 20.24 | 13.28 | 11.06 | | 3.31 | 11.06 | 0.34 | 7.53 | 8.27 | 24.12 | 11.52 | | | 6.52 | 3/21 | 8.47 | |---|--------------|---|----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|--------------|-------------|----------|--------------|--------------|----------------|----------------| | ∆'10-'15 | (3.78) | | 2/2 | 1.51 | (0.54) | 1.90 | | | | 8.10 | | | (10.34) | 12.14 | 7.78 | | | (1.39) | 3.36 | (2.56) | 7.63 | 3.27 | | | 7 000 | (20.14) | 2.22 | 4/12 | 0.33 | | ∆'14-'15 | 1.42 | | 9/0 | 2.93 | 3.01 | 1.55 | | | | | 4.96 | | (8.04) | 5.71 | | | | 3.20 | 13.56 | (0.86) | 5.51 | 6.57 | | 17.87 | 4 100 | (32.14) | 4.32 | 3/12 | 1.60 | | 2005 DTW | 65.53 | | S | ge | | 175.0 | 113.8 | 168.4 | 207.5 | 290.9 | 297.5 | | 294.2 | 255.7 | 225.7 | 237.3 | | 223.7 | 171.5 | 166.7 | 164.8 | 126.3 | 268.0 | 258.2 | r
C | 130.0 | 165.5 | S | de | | 2010 DTW | 58.60 | | Decline/ Wells | Average Change | 32.90 | 172.0 | | | L . | 278.30 | | | 262.75 | 247.60 | 220.20 | | | 219.0 | 163.80 | 163.80 | 164.90 | 121.30 | | | 00007 | 110.30 | 161.20 | Decline/ Wells | Average Change | | | 63.8 | - | ۵ | Ave | 36.45 | 171.65 | | | | | 281.57 | | 265.05 | 241.17 | | | | 223.59 | 174 | 165.5 | 162.78 | 124.6 | | 264.55 | 0.007 | 109.3 | 163.3 | Ŏ | Ave | | 2015 DTW 2014 DTW | 62.38 | | | | 33.44 | 170.1 | 112.68 | 171.68 | 220.37 | 270.2 | 276.61 | | 273.09 | 235.46 | 212.42 | 226.24 | 225.79 | 220.39 | 160.44 | 166.36 | 157.27 | 118.03 | 243.88 | 246.68 | ,,,,, | 144.44 | 158.98 | | | | Date | 6/3/2015 | | | | 6/2/2015 | 7/17/2015 | 6/10/2015 | 6/9/2015 | 6/9/2015 | 6/1/2015 | 7/1/2015 | 13 52 | 6/16/2015 | 4/1/2015 | 6/16/2015 | 6/12/2015 | 6/12/2015 | 6/15/2015 | 6/11/2015 | 6/10/2015 | 6/9/2015 | 7/13/2015 | 6/4/2015 | 6/15/2015 | 7.400 | CI 07/6/9 | 6/10/2015 | | | | longitude | 923538 | | | | 924151 | 921058 | 920330 | 914742 | 915056 | 915527 | 915440 | | 920543 | 915517 | 915116 | 92026 | 920208 | 920504 | 915444 | 915505 | 914523 | 920434 | 920221 | 920207 | 001 | 20/018 | 915713 | | | | Latitude | 341022 | | | | 341459.5 | 342650.8 | 342659.2 | 342139.6 | 341909.1 | 341446.2 | 341452.3 | | 341634.6 | 341143.1 | 341024.9 | 341104.6 | 341115.5 | 341123.1 | 342623.8 | 342628.4 | 340632.7 | 342502.1 | 341151.8 | 341158.7 | 0.400000 | 342309.3 | 342627 | | | | Station ID | 06S15W26ACA1 | | | | 05S16W35ACA1 | 03S11W22ABC1 | 03S10W14CAD1 | 04S07W17BCC1 | 04S08W35BBD1 | 05S08W30CBA1 | Jefferson D8W30ADB1 near Pi | | 05S10W16DBB1 | 06S08W16CCC1 | 06S08W25ADC1 | 06S10W23DBA1 | 06S10W23ACD1 | 06S10W23ACA2 | 03S08W19BAD1 | 03S08W19BBD1 | 07S07W24BAB | 03S10W27AAD | 06S09W17CCA1 | 06S09W17CAD | | U4SU8WVIIBAA | 03S09W23BCA1 | | | | County | Grant | | | | Hot Springs | Jefferson | Jefferson | Jefferson | Jefferson | Jefferson | Jefferson | | Jefferson 300 | Jenerson | Jefferson | | | | ∆'05-'15 | (7.27) | (11.80) | 8.26 | 2/3 | (3.60) | 11.86 | 5.89 | | 20.14 | 24.57 | (21.60) | (2.80) | 7.07 | 2/7 | 6.45 | | (13.40) | (12.29) | (4.40) | (4.61) | (11.09) | (4.08) | 13.55 | (0.63) | (2.77) | (8.64) | (11.92) | 10/11 | (5.48) | | |------------|--------------|--------------|--------------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|---|--------------|---------------|--------------|--------------|--------------|--------------|--------------------|--------------|--------------|--------------|--------------|----------------|----------------|--------------| | ∆'10-'15 | (2.52) | (89.68) | (1.16) | 8/8 | (4.45) | 90'2 | 0.72 | | 8.24 | 6.22 | 17.40 | 4.20 | 2.07 | 2/0 | 95'9 | | (9.80) | | (3.05) | (4.03) | (5.79) | 22.0 | Part of the second | | A | | | 4/5 | (4.38) | (5.39) | | ∆'14-'15 | 0.08 | | 1.09 | 0/2 | 0.59 | 2.86 | | | 4.74 | 9.08 | | 7.16 | 1.57 | 9/0 | 5.08 | | | (12.41) | 12.68 | 0.75 | (0.68) | | 8.25 | 10.17 | (1.92) | | (2.20) | 4/8 | 1.83 | 0.79 | | 2005 DTW | 59.55 | 51.88 | 61.97 | S | ge | 180.4 | 119.9 | | 147.6 | 140.0 | 210.5 | 202.0 | 268.5 | S | ge | | 127.9 | 97.32 | 121.5 | 98.77 | 128.5 | 146.5 | 140.2 | 119.8 | 71.35 | 85.33 | 92.33 | S | ge | | | 2010 DTW | 64.30 | 54.0 | 52.55 | Decline/ Wells | Average Change | 175.60 | 114.73 | | 135.70 | 121.65 | 249.5 | 209.0 | 263.5 | Decline/ Wells | Average Change | | 131.50 | | 122.85 | 99.35 | 133.80 | 151.35 | | | | | | Decline/ Wells | Average Change | 59.92 | | 2014 DTW | 6.99 | | 54.8 | ۵ | Ave | 171.4 | | | 132.2 | 124.51 | | 211.96 | 263.0 | ŏ | Ave | | | 97.2 | 138.58 | 104.13 | 138.91 | | 134.9 | 130.6 | 72.2 | 100 | 102.05 | Ŏ | Ave | 66.1 | | 2015 DTW | 66.82 | 63.68 | 53.71 | 3 | | 168.54 | 114.01 | 133.96 | 127.46 | 115.43 | 232.1 | 204.8 | 261.43 | | | | 141.3 | 109.61 | 125.9 | 103.38 | 139.59 | 150.58 | 126.65 | 120.43 | 74.12 | 93.97 | 104.25 | | | 65.31 | | Date | 6/11/2015 | 6/11/2015 | 6/11/2015 | | | 6/9/2015 | 6/4/2015 | 6/9/2015 | 6/9/2015 | 6/9/2015 | 6/5/2015 | 6/5/2015 | 6/5/2015 | The Table | | 1 | 5/31/2015 | 6/2/2015 | 5/27/2015 | 5/28/2015 | 5/27/2015 | 5/27/2015 | 6/2/2015 | 6/2/2015 | 6/2/2015 | 5/28/2015 | 8/24/2015 | | | 1/21/2015 | | longitude | 904119 | 905925 | 904749 | | | 915043 | 912753 | 913446 | 913454 | 913337 | 915217 | 915222 | 915128 | | | | 914503 | 914960 | 914737 | 914500 | 914426 | 914209 | 914700 | 915232 | 915825 | 914350 | 915024 | | | 910542 | | Latitude | 344209.7 | 344743.4 | 345005.9 | | | 340443.9 | 340104.9 | 340345 | 340309.5 | 332906.6 | 355850.6 | 335858.4 | 335633.9 | | | | 344425.3 | 343854.7 | 344939.1 | 344906.4 | 344651.5 | 344650.2 | 343235.5 | 343227.7 | 343246.5 | 345144.2 | 345204.6 | | | 344139 | | Station ID | 01N04E09CDD1 | 02N01E10CAD1 | 03N03E28CDB1 | | | 07S07W30CDC1 | 08S04W22AAA1 | 08S05W03BAA1 | 08S05W03BAA2 | 08S05W35ACC1 | 08S08W35DCB1 | 08S08W35DBB1 | 09S07W07DAD1 | | | | 01N07W03BCC1 | 01S08VV02DBD1 | 02N07W06ACD1 | 02N07W09AAA1 | 02N07W22DBA1 | 02N07W24DAC1 | 02S07W08DCC1 | 02S08W16BDA1 | 02S09W15BBB2 | 03S07W23CCC1 | 03N08W22DAD2 | | | 01N01W15DBC2 | | County | Lee | Lee | Fee | | | Lincoln | | | Lonoke | | Monroe | | 345042.2 911026 6/4/2015 345617.2 911504 6/3/2015 34.92636 -91.2058 6/4/2015 334440.9 923726 3/16/2015 334614.3 925726 3/16/2015 334614.3 925729 3/16/2015 333929.4 924211 6/9/2015 333929.4 924211 6/9/2015 333945.6 924304 3/25/2015 333945.6 924304 3/25/2015 333945.6 924304 3/25/2015 333917.2 925445 3/17/2015 333416.2 924451 3/17/2015 333416.2 924451 3/17/2015 333416.2 924461 3/18/2015 333252.8 924927 3/18/2015 333252.8 925255 3/11/2015 33326.8 925255 3/11/2015 3332803.4 925255 3/18/2015 3332917.6 925704 3/25/2015 | | 52.57
9.28
24.38
De
69.47
19.87
34.68
53.98 | 10.10
11.80
29.30
Decline/ Wells | 47.13 | 1.81 | | (3.63) |
--|------------------|---|--|--------|--------|---------|--------| | 911504
911515
-91.2058
-91.2058
923726
924927
924211
924211
924211
924927
930352
930418
930418
924640
924640
925255
925251
925255 | | 9.28
24.38
De
69.47
19.87
34.68
53.98 | 10.10
11.80
29.30 | 14.59 | (12.0) | 2000 | 1 | | 911515
-91.2058
-91.2058
923726
924927
924211
924211
924451
930352
930352
930352
930446
924461
930013
924461
9304640
924640
925255
925255
925251 | | 24.38 De Ave Born 19.87 34.68 53.98 30.77 | 11.80
29.30 | 7.7 | 1 | 0.11 | 4.60 | | 91.2058
923726
924927
924304
924211
924211
924304
924211
924211
924451
930352
9303146
924451
930418
924640
924640
924640
925245
925251
925251 | | Ave 69.47 19.87 34.68 53.98 | 29.30 | 9.86 | 12.34 | (0.24) | (2.18) | | 923726
924927
924927
925759
923922
924211
924211
925442
930352
930352
9304640
924640
924627
925255
925251
925251 | | Ave 69.47 19.87 34.68 53.98 30.77 | ecline/ Wel | 30.49 | | (3.99) | (2.80) | | 923726
924927
924927
924211
924211
924211
924451
930146
924451
930146
924451
930148
924640
924640
925255
925251
925251 | | Ave
69.47
19.87
34.68
53.98
53.98 | ecline/ Wel | | | | | | 923726
924927
924927
925759
924211
924211
924211
924304
9254421
930313
930313
930418
924640
924640
924627
925255
925251
925251 | | Ave 69.47 19.87 34.68 53.98 53.98 | The second secon | S | 1/4 | 3/4 | 3/4 | | 923726
924927
925759
923922
924211
924211
924421
930352
930352
930446
930446
924640
924640
925255
925255
925251
925251 | | 69.47
19.87
34.68
53.98
30.77 | Average Change | ge | 3.56 | (2.38) | (1.00) | | 924927
925759
923922
924211
924211
924211
925442
930146
930146
930146
924451
930148
924640
924640
925255
925251
925251 | | 19.87
34.68
53.98
30.77 | 52.80 | 71.72 | 0.84 | (15.83) | 3.09 | | 925759
923922
924211
924211
924304
925951
930352
930418
930418
924927
925255
925251
925251
925251 | | 34.68
53.98
30.77 | 14.70 | 18.70 | 4.83 | (0.34) | 3.66 | | 923922
924211
924211
924304
925951
930146
930146
930013
930418
924640
924640
925255
925255
925251
925251 | | 53.98 | | 44.10 | (8.42) | | 1.00 | | 924211
924304
925951
925951
930352
930362
930418
924640
924640
924627
925255
925251
925251
925251 | | 30.77 | 49.55 | 70.57 | 14.90 | 10.47 | 31.49 | | 924211
925951
925951
925442
930352
930418
930418
924927
925255
925255
925251
925251
925251 | | | | 33.82 | 7.12 | | 10.17 | | 924304
925951
925442
930352
930146
924451
930418
924640
924640
925255
925255
925251
925251
925251 | | 29.82 | 22.50 | | 0.72 | (09.9) | | | 925951
930352
930352
930146
924451
930418
924927
925255
925255
925251
925704 | | 18.97 | 28.10 | 34.69 | (0.47) | 99.8 | 15.25 | | 925442
930352
930146
924451
930013
924640
924927
925255
925251
925251
925704 | | 29.74 | 26.85 | | 2.70 | (0.19) | | | 930352
930146
924451
930418
924640
924927
925255
925255
925251
925251
925704 | | 78.35 | 77.10 | 77.43 | 0.70 | (0.55) | (0.22) | | 930146
924451
930013
930418
924927
925255
925255
925251
925704
930513 | | 12.95 | 13.20 | 10.01 | 78.7 | 8.12 | 4.93 | | 924451
930013
930418
924640
925255
925345
925251
925704
930513 | 10/2015 163.74 | | | 156.2 | | | (7.54) | | 930013
930418
924640
925255
925251
925704
930513 | 3/25/2015 21.19 | 25.53 | 24.35 | 32.19 | 4.34 | 3.16 | 11.00 | | 930418
924640
924927
925255
925345
925251
925704
930513 | 3/17/2015 114.83 | 115.63 | 112.90 | | 08'0 | (1.93) | | | 924640
925255
925345
925251
925704
930513 | 3/18/2015 36.46 | 37.53 | 37.80 | 36.22 | 1.07 | 1.34 | (0.24) | | 925255
925255
925245
925251
925704
930513 | 3/25/2015 13.63 | 21.64 | 15.60 | 19.53 | 8.01 | 1.97 | 2.90 | | 925255
925345
925251
925704
930513 | 3/25/2015 15.21 | 17.53 | 17.20 | | 2.32 | 1.99 | | | 925345
925251
925704
930513 | 3/11/2015 35.69 | 37.31 | 34.55 | 36.93 | 1.62 | (1.14) | 1.24 | | 925251
925704
930513
924027 | 3/18/2015 8.78 | 12.56 | 15.70 | 11.22 | 3.78 | 6.92 | 2.44 | | 925704
930513
924027 | 3/18/2015 75.96 | 78.39 | 70.80 | 81.86 | 2.43 | (5.16) | 2.90 | | 930513 | 3/25/2015 42.3 | 43.61 | 41.30 | 43.37 | 1.31 | (1.00) | 1.07 | | 924027 | 3/18/2015 89.86 | 90.44 | 87.40 | 87.52 | 0.58 | (2.46) | (2.34) | | THE SECULO STATE OF THE PARTY O | 3/25/2015 151.23 | 152.99 | 158.60 | 176.40 | 1.76 | 7.37 | 25.17 | | 332416.8 924314 3/25 | 3/25/2015 118 | 120.84 | | | 2.84 | | | | 332332 924729 3/25 | 3/25/2015 178.91 | 186.69 | | | 7.78 | | | | 332310.8 925436 3/18 | 3/18/2015 89.23 | 96.68 | 91.05 | 95.43 | 0.73 | 1.82 | 6.20 | | A'05-'15 | 7 80 | 10.63 | | | 4/21 | 6.36 | 3.33 | 0.89 | (1.64) | 14.25 | 14.26 | 1.24 | 1.88 | ! | 1// | 4.89 | | (3.88) | (90.6) | (14.49) | | (12.55) | . 5 | 4/4 | (10.00) | | (8.45) | (17.02) | (5.47) | |----------------------------|----------------|------------------|--------------|--------------|----------------|----------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|----|----------------|----------------|---|--------------|--------------|--------------
-------------------|--------------|--------------|----------------|----------------|---|--------------|--------------|--------------| | A'40-'45 | 2 | 2.83 | (2.70) | (3.35) | 10/21 | 0.58 | (3.08) | (4.33) | (96.36) | (5.01) | (8.14) | (3.54) | (0.31) | Į. | 111 | (4.34) | | (0.32) | (4.10) | (6.49) | | (6.45) | | 4/4 | (4.34) | | (13.75) | (19.92) | (17.27) | | A'14-145 | 1 | 0.36 | (3.60) | 0.52 | 3/27 | 2.50 | 3.79 | (8.28) | | | (1.74) | 1.28 | (4.31) | ij | 3/5 | (1.85) | | (0.17) | 11.21 | | (1.51) | 0.04 | | 2/4 | 2.39 | | (1.16) | 2.87 | | | WITH SOUR | 73.05 | 198.4 | | | s | ge | 80.79 | 36.62 | 33.52 | 34.96 | 112.8 | 43.88 | 35.99 | | S | ge | | 94.74 | 75.44 | 95.1 | | 105.5 | | S | ge | | 155.8 | 148.7 | 158.9 | | | | 190.60 | 112.90 | 12.73 | Decline/ Wells | Average Change | 74.38 | 31.40 | 29.20 | 15.70 | 90.40 | 39.10 | 33.80 | | Decline/ Wells | Average Change | | 98.30 | 80.40 | 103.10 | | 111.60 | | Decline/ Wells | Average Change | | 150.50 | 145.80 | 147.10 | | 2015 DTW 2014 DTW 2010 DTW | | 188.13 | 112.0 | 16.6 | ŏ | Ave | 81.25 | 27.45 | | | 96.8 | 43.92 | 29.8 | ľ | ď | Ave | T | 98.45 | 95.71 | | 119.54 | 118.09 | | Ď | Ave | G | 163.09 | 168.59 | | | MTO STOC | 69 AE | 187.77 | 115.6 | 16.08 | | | 77.46 | 35.73 | 35.16 | 20.71 | 98.54 | 45.64 | 34.11 | | | | | 98.62 | 84.5 | 109.59 | 121.05 | 118.05 | 253.36 | | | | 164.25 | 165.72 | 164.37 | | Date | U | 3/11/2015 | 1/15/2015 | 1/14/2015 | | | 6/11/2015 | 6/11/2015 | 6/11/2015 | 6/11/2015 | 6/11/2015 | 6/11/2015 | 6/11/2015 | | | | | 6/11/2015 | 6/11/2015 | 6/11/2015 | 7/1/2015 | 6/11/2015 | 4/1/2015 | | | | 5/28/2015 | 5/28/2015 | 5/28/2015 | | abilitional | 030348 | 930432 | 900086 | 925055 | ij | | 905455 | 90206 | 903526 | 903635 | 903907 | 904915 | 905121 | | | | | 905825 | 905924 | - | 905107 | 905321 | 922417 | | | | 913846 | 913532 | 913352 | | Latitude | 337618 4 | 332438 | 333819 | 333234 | | | 343324.3 | 343323.5 | 343108.3 | 342850.8 | 343242.9 | 342402.9 | 341824.2 | | | | | 352930.5 | 352724.9 | 35.50732 | | 353448.2 | 325647 | | | | 343943 | 343904 | 343639.9 | | Station ID | 15C40\A(40DCC4 | S19W21CDD2 Steph | 13S18W06BBA1 | 14S17W03CBA1 | | | 01S02E32DDC1 | 02S02E01ADC1 | 02S05E16BCB | 02S05E29CCC1 | 02S04E02DBA1 | 03S03E30DAA1 | 04S02E25CCC1 | | | | | 10N01E15DBB1 | 10N01E33ABA1 | 10N01E12BDC1 | 02E11BDC1 near We | 11N02E16CCC1 | Un-84 Truxno | | | | 01N06W34CBB1 | 01S05W06BCB1 | 01S05W20ABB1 | | County | di doci - | | \mathbf{r} | Ouachita | | 1 | Phillips | | | | Poinsett | Poinsett | Poinsett | Poinsett | Poinsett | Poinsett | | | | Prairie | Prairie | Prairie | | ∆'05-'15 | (9.94) | (4.59) | (5.63) | | (7.03) | 36.85 | | | | (16.98) | (18.04) | (3.95) | (2.15) | 11/12 | (5.20) | 39.91 | | 36.89 | 52.54 | 22.21 | | | 10.70 | 1.77 | 6.39 | 50.14 | 42.37 | | 55.53 | 74.53 | 50.73 | |------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|--------------|--------------|--------------|--------------|-----------------|--------------|--------------|--------------|--------------|--------------|------------------|--------------|--------------|-------------------|--------------|--------------| | ∆'10-'15 | | (7.89) | (3.23) | (16.98) | (3.73) | | | (6.63) | | (6.41) | (15.04) | (5.25) | (3.95) | 12/12 | (10.00) | 8.11 | | 42.49 | 22.49 | 14.39 | 7.01 | | 17.70 | 2.55 | 1.43 | 27.95 | 11.32 | 14.24 | 16.84 | 24.00 | | | ∆'14-'15 | (8.99) | | 0.41 | 7.75 | | | 0.25 | 15.37 | 9.15 | 1.62 | (2.96) | 1.07 | 6.55 | 3/12 | 2.66 | 13.01 | 8.26 | (0.11) | 2.12 | 0.58 | 3.90 | 6.51 | 14.22 | 0.24 | (11.81) | 5.26 | 2.60 | 1.66 | 0.35 | 2.92 | (19.58) | | 2005 DTW | 164.0 | 115.7 | 164.7 | | 139.5 | 91.13 | | | | 138.2 | 142.0 | 119.9 | 119.0 | S | ge | 160.90 | | 288.30 | 294.2 | 168.4 | | | 205.3 | 93.02 | 96.68 | 317.2 | 255.0 | | 331.1 | 390.8 | 437.20 | | 2010 DTW | | 112.40 | 167.10 | 150.50 | 142.80 | 5 | | 97.30 | | 148.77 | 145.0 | 118.60 | 117.20 | Decline/ Wells | Average Change | 129.10 | | 293.90 | 264.15 | 160.58 | 212.00 | | 212.30 | 93.80 | 85.0 | 295.01 | 223.95 | 271.95 | 292.41 | 340.27 | | | 2014 DTW | 164.95 | | 170.74 | 175.23 | | | 111.54 | 119.3 | 117.6 | 156.8 | 157.08 | 124.92 | 127.7 | Ď | Ave | 134 | 257.19 | 251.3 | 243.78 | 146.77 | 208.89 | 222.04 | 208.82 | 91.49 | 71.76 | 272.32 | 215.23 | 259.37 | 275.92 | 319.19 | 366.89 | | 2015 DTW | 173.94 | 120.29 | 170.33 | 167.48 | 146.53 | 54.28 | 111.29 | 103.93 | 108.45 | 155.18 | 160.04 | 123.85 | 121.15 | | | 120.99 | 248.93 | 251.41 | 241.66 | 146.19 | 204.99 | 215.53 | 194.6 | 91.25 | 83.57 | 267.06 | 212.63 | 257.71 | 275.57 | 316.27 | 386.47 | | Date | 6/2/2015 | 5/28/2015 | 5/28/2015 | 2/4/2015 | 5/28/2015 | 6/2/2015 | 2/4/2015 | 2/4/2015 | 5/31/2015 | 5/27/2015 | 5/27/2015 | 5/27/2015 | 5/27/2015 | | | 2/18/2015 | 2/18/2015 | 5/4/2015 | 3/17/2015 | 3/9/2015 | 5/4/2015 | 5/30/2015 | 5/4/2015 | 2/18/2015 | 2/18/2015 | 4/1/2015 | 3/17/2015 | 3/17/2015 | 4/1/2015 | 4/1/2015 | 5/20/2015 | | longitude | 913613 | 913701 | 913654 | 913613 | 913505 | 912802 | 913300 | 912937 | 913852 | 914050 | 914033 | 913829 | 913801 | | | 923218 | 923229 | 923958 | 924129 | 924329 | 924507 | 924842 | 925709 | 923203 | 923160 | 923224 | 924133 | 924027 | 924129 | 923910 | 923924 | | Latitude | 343859.5 | 344442.4 | 343749 | 343826 | 344113.1 | 344649.1 | 344649 | 344659 | 344928 | 344718.2 | 344706.6 | 344644.2 | 344653.7 | 1 | | 331944 | 331701 | 331859.9 | 331717.1 | 332205.9 | 332138 | 331700 | 331806 | 331456.8 | 331451.3 | 331354.4 | 331645.6 | 331504.8 | 331439 | 331246.1 | 331232.9 | | Station ID | 01S06W01BDD2 | 01S06W02ABB1 | 01S06W11DBD1 | 01S06W12BAB2 | 01S05W19CDC | 02S04W19ACB1 | 02N05W21CBB2 | 02N05W24BCA4 | 02N06W04DBB1 | 02N06W19AAB1 | 02N06W20BCB1 | 02N06W21DAD1 | 02N06W22BDD1 | | | 16S14W15CAB1 | 16S14W34CBC1 | 16S15W20DAA1 | 16S15W31ACC1 | 16W02ABC1 Smack | 16S16W03CBC1 | 16S17W36DCC1 | 16S18W34ABC2 | 17S14W10DCC1 | 17S14W15ABA1 | 4W22BAB1 Union S | 17S15W06BAA1 | 17S15W08CDD1 | \$15W18DBB1 Monsa | 17S15W28DBA1 | 17S15W28DCC1 | | County | Prairie | | Union | 15 | o
o | | 9 | | | | 1 | .5 | ~ | | | 5 | _ | б | <u></u> | 4 | 7 | 1 | | 4 | 10 | 4 | (6) | 1 | 2 | | IC | 2 | က | | 5) | 2) | 1 | |------------|--------------|--------------|--------------|-------------|--------------|--------------|-------------------|--------------|--------------|-------------------|--------------|--------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|----|--------------|--------------|--------------| | ∆'05-'15 | 56.29 | | 90'99 | | | | 48.67 | 37.72 | 7.08 | | | 82.45 | 55.11 | 34.89 | 65.51 | 80.74 | 35.37 | 35.27 | | 4.74 | 3.65 | 13.44 | (14.49) | 45.67 | 26.02 | | 3.05 | 1/32 | 36.13 | | (7.95) | (2.22) | (6.91) | | ∆'10-'15 | 19.39 | | 12.36 | | | 12.83 | 21.12 | 13.32 | 5.28 | | | (0.35) | 23.44 | 10.93 | 15.21 | 11.36 | (5.38) | 7.10 | 9.24 | 6.20 | 3.77 | 68.6 | (6.57) | 33.95 | (3.00) | | 2.93 | 4/35 | 12.15 | | (4.11) | (3.68) | (9.90) | | ∆'14'15 | 15.12 | 2.25 | 3.11 | 4.71 | (18.01) | 1.11 | 3.05 | 4.37 | 6.72 | (0.28) | 12.19 | 24.33 | 3.01 | 26.62 | 20.75 | (0.02) | (12.79) | 2.18 | (12.99) | 3.69 | 0.05 | 4.34 | (6.74) | (06.0) | (0.29) | (4.87) | 0.56 | 12/44 | 2.59 | | (0.70) | 00.00 | (1.09) | | 2005 DTW | 425.30 | | 415.0 | | | | 359.0 | 321.90 | 141.20 | | | 398.60 | 373.7 | 374.0 | 422.5 | 469.7 | 331.20 | 353.5 | | 86.64 | 152.0 | 152.3 | 157.8 | 68.42 | 247.10 | | 191.40 | S | ge | | 55.76 | 46.61 | 11.64 | | 2010 DTW | 388.40 | | 372.30 | | | 262.58 | 331.45 | 297.50 | 139.40 | | | 315.80 | 342.03 | 350.04 | 372.20 | 400.32 | 290.45 | 325.33 | 267.40 | 88.10 | 152.12 | 148.25 | 165.72 | 56.70 | 218.08 | | 191.28 | Decline/ Wells | Average Change | | 59.60 | 45.15 | 8.65 | | 2014 DTW | 384.13 | 105.64 | 363.05 | 360.08 | 329.21 | 250.86 | 313.38 | 288.55 | 140.84 | 112.41 | 177.42 | 340.48 | 321.6 | 365.73 | 377.74 | 388.94 | 283.04 | 320.41 | 245.17 | 85.59 | 148.4 | 143.2 | 165.55 | 21.85 | 220.79 | 250.99 | 188.91 | ۵ | Ave | | 63.01 | 48.83 | 17.46 | | 2015 DTW | 369.01 | 103.39 | 359.94 | 355.37 | 347.22 | 249.75 | 310.33 | 284.18 | 134.12 | 112.69 | 165.23 | 316.15 | 318.59 | 339.11 | 356.99 | 388.96 | 295.83 | 318.23 | 258.16 | 81.9 | 148.35 | 138.86 | 172.29 | 22.75 | 221.08 | 255.86 | 188.35 | | | 12 | 63.71 | 48.83 | 18.55 | | Date | 5/13/2015 | 5/13/2015 | 4/2/2015 | 5/20/2015 | 3/17/2015 | 3/17/2015 | 4/2/2015 | 5/4/2015 | 5/13/2015 | 4/1/2015 | 5/14/2015 | 5/14/2015 | 4/1/2015 | 2/18/2015 | 5/5/2015 | 5/5/2015 | 4/4/2015 | 3/10/2015 | 5/4/2015 | 5/20/2015 | 8/6/2015 | 5/13/2015 | 5/20/2015 | 5/13/2015 | 5/13/2015 | 5/5/2015 | 5/4/2015 | | | | 6/5/2015 | 6/5/2015 | 6/5/2015 | | longitude | 924117 | 924116 | 924105 | 923925 | 923629 | 924233 | 924838 | 925356 | 922120 | 922113 | 922634 | 923531 | 923802 | 923858 | 924316 | 924232 | 924611 | 925056 | 925615 | 920904 | 921229 | 921113 | 921717 | 923645 | 924326 | 925153 | 925608 | | | | 910407 | 910727 | 911456 | | Latitude | 331145.1 | 331144.4 | 331143.8 | 331223 | 331217 | 331649 | 331256 | 331257.4 | 330650.4 | 330618.5 | 330915 | 331039.2 | 331103.8 | 330659.3 | 331011.2 | 331028.8 | 330809.2 | 330855.9 | 331050.9 | 330329 | 330255.4 | 330217.8 | 330411.3 | 330534.8 | 330108.9 | 330455 | 330451.7 | | | | 350425.8 | 350310.7 | 350026.9 | | Station ID | 17S15W31DCA1 | 17S15W31DCA3 | 17S15W31DDA1 | 17S15W33BA1 | 17S15W36BAB1 | 17S16W01BAA1 | 7S17W25DBA2 Airpd | 17S17W30DCD1 | 18S12W33BBB1 | 3S12W33CBC1 Strop | 18S13W16ADD1 | 18S14W06CCD1 | 5W03DAB1 Welcom | 18S15W33ADA1 | 18S16W11DAC1 | 18S16W12ACB1 | 18S16W28BBB1 | 18S17W22BDD1 | 18S18W11ACD2 | 19S10W16CBC1 | 19S11W23ACA1 |
19S11W25AAA1 | 19S12W13AAA1 | 19S15W01CCA1 | 19S16W35DDC1 | 19S17W16BAA1 | 19S18W14ADA1 | | | | 05N01W11ABA1 | 05N01W17DBB1 | 05N02W31DCB3 | | County | Union | | | Woodruff | Woodruff | Woodruff | Sparta Change Table 2015,2014,2010,2005 | County | Station ID | Latitude | longitude | Date | 2015 DTW | 2014 DTW | 2015 DTW 2014 DTW 2010 DTW 2005 DTW A1-15 | 2005 DTW | ∆'14'15 | ∆'10-'15 | ∆'05-'15 | |----------|--------------|----------|-----------|----------|----------|----------|---|----------|---------|----------|----------| | Woodruff | 06N01W13ABA1 | 350851.8 | 910254 | 6/5/2015 | 74.5 | 73.18 | 70.60 | 63.04 | (1.32) | (3.90) | (11.46) | | Woodruff | 07N01W12BCB1 | 35.24488 | -91.0573 | 6/9/2015 | 74.4 | | | 61.52 | | | (12.88) | | Woodruff | 08N01W12CDA1 | 351934 | 910311 | 6/9/2015 | 29.92 | 78.38 | 75.20 | 72.04 | 1.75 | (1.43) | (4.59) | | Woodruff | 08N02W26ADC1 | 35.29049 | -91.1678 | 6/9/2015 | 33.53 | | | 32.56 | | | (0.97) | | | | | | | | | N
N | | | | | | | | | | | | ٥ | Decline/ Wells | s | 3/5 | 5/5 | 2/12 | | | | | | | | Av | Average Change | ge | (0.27) | (4.60) | (6.71) | | | P. | | | | | | | | | | | | | | | | | | Ď | Declined Wells | IS | 64/225 | 112/207 | 103/229 | | | | | | | | Total | Total Percent Decline | cline | 28.40% | 54.10% | 44.92% | | | | | | | | Tot | Total Avg Change | -ge | 2.36 | 1.29 | 5.96 |